A novel structural mechanism (SM) that is capable of transforming itself into various hyperbolic paraboloid (hypar) geometries is introduced in this paper. Composed of straight bars and novel joint types, the SM is designed based on the ruled surface generation method. Thus, the paper first investigates the geometrical properties and morphology of the hypar surface. Second, it constructs the SM and discusses its transformation capability with respect to its kinematic properties. Then, it presents a parametric model not only to analyze the geometry and possible configurations of the SM but also to prepare a model for the structural analysis. Finally, a transformable shelter structure is proposed as an architectural application of the SM and its feasibility is tested based on the structural analysis conducted in different configurations of the structure. According to the results of the structural analysis, the strength, and the stiffness of the structure are discussed in detail.

References

References
1.
Pinero
,
E.
,
1961
, “
Project for a Mobile Theatre
,”
Archit. Des.
,
31
(12), p.
570
.
2.
Zeigler
,
T.
,
1976
, “
Collapsable Self-Supporting Structures
,” U.S. Patent No. 3,968,808.
3.
Escrig
,
F.
,
1985
, “
Expendable Space Structures
,”
Int. J. Space Struct.
,
1
(
2
), pp.
79
91
.
4.
Gantes
,
C.
,
Connor
,
J. J.
,
Logcher
,
R. D.
, and
Rosenfeld
,
Y.
,
1989
, “
Structural Analysis and Design of Deployable Structures
,”
Comput. Struct.
,
32
(
3/4
), pp.
661
669
.10.1016/0045-7949(89)90354-4
5.
Hoberman
,
C.
,
1993
, “
The Iris Dome
,”
L'Arca
,
5
(73), pp.
54
57
.
6.
Kokawa
,
T.
,
2000
, “
Structural Idea of Retractable Loop-Dome
,”
J. Int. Assoc. Shell Spat. Struct.
,
41
(
133
), pp.
107
114
.
7.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.10.1016/S0020-7683(96)00125-4
8.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.10.1115/1.4005601
9.
Chen
,
Y.
, and
You
,
Z.
,
2005
, “
Deployable Structure
,” U.S. Patent Application No. 6,941,704 B2.
10.
Langbecker
,
T.
, and
Albermani
,
F.
,
2001
, “
Kinematic and Non-Linear Analysis of Foldable Barrel Vaults
,”
Eng. Struct.
,
23
(
2
), pp.
158
171
.10.1016/S0141-0296(00)00033-X
11.
Van Mele
,
T.
,
De Temmerman
,
N.
,
De Laet
,
L.
, and
Mollaert
,
M.
,
2010
, “
Scissor-Hinged Retractable Membrane Structures
,”
Int. J. Struct. Eng.
,
1
(
3/4
), pp.
374
396
.10.1504/IJSTRUCTE.2010.033489
12.
Akgün
,
Y.
,
Gantes
,
C. J.
,
Sobek
,
W.
,
Korkmaz
,
K.
, and
Kalochairetis
,
K.
,
2011
, “
A Novel Adaptive Spatial Scissor-Hinge Structural Mechanism for Convertible Roofs
,”
Eng. Struct.
,
33
(
4
), pp.
1365
1376
.10.1016/j.engstruct.2011.01.014
13.
Al Khayer
,
M.
, and
Lalvani
,
H.
,
1998
, “
Scissors-Action Deployables Based on Space-Filling of Polygonal Hyperboloids
,”
IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
,
Cambridge, UK, Sept. 6–9, Kluwer Academic Publishers
,
Cambridge
, UK, pp.
1
10
. 10.1007/978-94-015-9514-8_1
14.
Langbecker
,
T.
,
2000
, “
Kinematic and Non-Linear Analysis of Foldable Scissor Structures
,” Ph.D. thesis, University of Queensland, Brisbane, Australia.
15.
Hoberman
,
C.
, “
Expanding Helicoid and Expanding Hypar
,” Available at: http://www.hoberman.com/portfolio.php
16.
Petrova
,
P.
,
2008
, “
An Anti-Clastic, Double-Curved SELs Structure
,”
Proceeding of the 1st Symposium on Architectural Geometry, Advances in Architectural Geometry
,
Vienna
, pp.
111
114
.
17.
Roovers
,
K.
,
Mira
,
L. A.
, and
De Temmerman
,
N.
,
2013
, “
From Surface to Scissor Structure
,”
Proceedings of the First Conference Transformables
, Seville, Editorial Starbooks, Seville, Spain, pp.
275
280
.
18.
Maden
,
F.
,
Korkmaz
,
K.
, and
Akgün
,
Y.
,
2013
, “
Design of Reconfigurable Doubly-Curved Canopy Structure
,”
Proceedings of the ICSA 2013—Structures and Architecture: Concepts, Applications, and Challenges
,
P. J. S.
Cruz
., ed., Gumaraes, Portugal, July 24–26, Taylor & Francis,
London, UK
, pp.
1040
1047
.
19.
Alizade
,
R.
,
2010
, “
Structural Synthesis of Robot Manipulators
,”
Proceedings of the AZcIFToMM 2010 International Symposium of Mechanism and Machine Science
,
Izmir
, pp.
11
32
.
20.
Korkmaz
,
K.
,
Akgün
,
Y.
, and
Maden
,
F.
,
2012
, “
Design of a 2DOF 8R Linkage for Transformable Hypar Structure
,”
Mech. Based Des. Struct. Mach.
,
40
(
1
), pp.
19
32
.10.1080/15397734.2011.590775
21.
European Structural Steel Standard EN 10025
,
2004
, “Part 2—Technical Delivery Conditions for Non-Alloy Structural Steels,” BSI, London.
22.
European Committee for Standardization (CEN). EN 1991-1-4
, 2005,
Eurocode 1: Actions on Structures—Part 1-4: General Actions—Wind Actions
,
European Committee for Standardization
, Brussels, Belgium.
23.
Australian/New Zealand Standard
,
2002
,
Structural Design Actions; Part 2: Wind Actions
,
AS/NZS
, Sydney, Australia.
24.
European Committee for Standardization (CEN). EN 1991-1-3
,
2003
,
Eurocode 1: Actions on structures—Part 1-3: General Actions—Snow Loads
,
European Committee for Standardization
, Brussels, Belgium.
25.
European Committee for Standardization (CEN). EN 1990
,
2002
,
Eurocode: Basis of Structural Design
, European Committee for Standardization, Brussels, Belgium.
You do not currently have access to this content.