Optimal allocation of redundancies is one of the most important ways of improving system reliability. Generally, in these redundancy allocation problems, it is assumed that failures of components are independent. However, under this assumption failure rates can be underestimated since failure interactions can significantly affect the performance of systems. In this paper, we first propose an analytical model to describe the failure rates with failure interactions, followed by a modified analytical hierarchy process (MAHP) which is proposed to solve redundancy allocation problems with failure interactions. MAHP decomposes the system into several blocks and deals with those downsized blocks before diving deep into the most appropriate component for redundancy allocation. Being simple and flexible, MAHP provides an intuitive way to design a complex system and the explicit function of the entire system reliability is not required in the proposed approach. More importantly, with the help of the proposed analytical failure interaction model, MAHP can capture the effect of failure interactions. Results from case studies clearly demonstrate the applicability of the analytical model for failure interactions and MAHP for reliability design.

References

1.
Sun
,
Y.
,
Ma
,
L.
,
Mathew
,
J.
, and
Zhang
,
S.
,
2006
, “
An Analytical Model for Interactive Failures
,”
Reliab. Eng. Syst. Saf.
,
91
(
5
), pp.
495
504
.10.1016/j.ress.2005.03.014
2.
Murthy
,
D.
, and
Nguyen
,
D.
,
1985
, “
Study of Two-Component System With Failure Interaction
,”
Nav. Res. Logist. Q.
,
32
(
2
), pp.
239
247
.10.1002/nav.3800320205
3.
Murthy
,
D.
, and
Nguyen
,
D.
,
1985
, “
Study of a Multi-Component System With Failure Interaction
,”
Euro. J. Oper. Res.
,
21
(
3
), pp.
330
338
.10.1016/0377-2217(85)90153-5
4.
Sun
,
Y.
, and
Ma
,
L.
,
2010
, “
Estimating Interactive Coefficients for Analysing Interactive Failures
,”
Maint. Reliab.
,
2
(
46
), pp.
67
72
. Available at: http://www.ein.org.pl/pl-2010-02-14
5.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.10.1115/1.4007931
6.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2011
, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
133
(
4
), p.
044501
.10.1115/1.4004442
7.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2013
, “
Efficient Global Surrogate Modeling for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011009
.10.1115/1.4022999
8.
Ebeling
,
C.
,
1997
,
An Introduction to Reliability and Maintainability Engineering
,
McGraw-Hill Companies, Inc.
,
Boston, MA
.
9.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.10.1016/j.mechmachtheory.2008.04.002
10.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Performance Analysis and Comparison of Planar 3-DOF Parallel Manipulators With One and Two Additional Branches
,”
J. Intell. Rob. Syst.
,
72
(
1
), pp.
73
82
.10.1007/s10846-013-9824-8
11.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Stiffness and Natural Frequency of a 3DOF Parallel Manipulator With Consideration of Additional Leg Candidates
,”
Rob. Autonom. Syst.
,
61
(
8
), pp.
868
875
.10.1016/j.robot.2013.03.001
12.
Huang
,
C.
,
Lo
,
J.
,
Kuo
,
S.
, and
Lyu
,
M.
,
2004
, “
Optimal Allocation of Testing-Resource Considering Cost, Reliability, and Testing-Effort, Dependable Computing
,” Dependable Computing, Proceedings of the 10th
IEEE
Pacific Rim International Symposium on, Mar. 3–5, pp.
103
112
.10.1109/PRDC.2004.1276561
13.
Ramirez-Marquez
,
J.
,
Coit
,
D. W.
, and
Konak
,
A.
,
2004
, “
Redundancy Allocation for Series–Parallel Systems Using a Max-Min Approach
,”
IIE Trans.
,
36
(
9
), pp.
891
898
.10.1080/07408170490473097
14.
Yalaoui
,
A.
,
Châtelet
,
E.
, and
Chu
,
C.
,
2005
, “
A New Dynamic Programming Method for Reliability and Redundancy Allocation in a Parallel–Series System
,”
IEEE Trans. Reliab.
,
54
(
2
), pp.
254
261
.10.1109/TR.2005.847270
15.
Majety
,
S.
,
Dawande
,
M.
, and
Rajgopal
,
J.
,
1999
, “
Optimal Reliability Allocation With Discrete Cost-Reliability Data for Components
,”
Oper. Res.
,
47
(
6
), pp.
899
906
.10.1287/opre.47.6.899
16.
Marseguerra
,
M.
,
Zio
,
E.
, and
Podofillini
,
L.
,
2005
, “
Multiobjective Spare Part Allocation by Means of Genetic Algorithms and Monte Carlo Simulation
,”
Reliab. Eng. Syst. Saf.
,
87
(
3
), pp.
325
335
.10.1016/j.ress.2004.06.002
17.
Liang
,
Y.
, and
Smith
,
A.
,
2004
, “
An Ant Colony Optimization Algorithm for the Redundancy Allocation Problem (RAP)
,”
IEEE Trans. Reliab.
,
53
(
3
), pp.
417
423
.10.1109/TR.2004.832816
18.
Dhingra
,
A.
,
1992
, “
Optimal Apportionment of Reliability and Redundancy in Series Systems Under Multiple Objectives
,”
IEEE Trans. Reliab.
,
41
(
4
), pp.
576
582
.10.1109/24.249589
19.
Kartik
,
S.
, and
Siva Ram Murthy
,
C.
,
1995
, “
Improved Task-Allocation Algorithms to Maximize Reliability of Redundant Distributed Computing Systems
,”
IEEE Trans. Reliab.
,
44
(
4
), pp.
575
586
.10.1109/24.475976
20.
Allella
,
F.
,
Chiodo
,
E.
, and
Lauria
,
D.
,
2005
, “
Optimal Reliability Allocation under Uncertain Conditions, With Application to Hybrid Electric Vehicle Design
,”
Int. J. Qual. Reliab. Manage.
,
22
(
6
), pp.
626
641
.10.1108/02656710510604926
21.
Jacobson
,
D.
, and
Arora
,
S.
,
1996
, “
Simultaneous Allocation of Reliability & Redundancy Using Simplex Search
,”
Symposium Reliability and Maintainability Symposium, Proceedings of the International Symposium on Product Quality and Integrity
, Las Vegas, NV, Jan. 22–25, pp.
243
250
.10.1109/RAMS.1996.500669
22.
Lyu
,
M.
,
Rangarajan
,
S.
, and
van Moorsel
,
A.
,
2002
, “
Optimal Allocation of Test Resources for Software Reliability Growth Modeling in Software Development
,”
IEEE Trans. Reliab.
,
51
(
2
), pp.
183
192
.10.1109/TR.2002.1011524
23.
Levitin
,
G.
, and
Lisnianski
,
A.
,
2001
, “
Optimal Separation of Elements in Vulnerable Multi-State Systems
,”
Reliab. Eng. Syst. Saf.
,
73
(
1
), pp.
55
66
.10.1016/S0951-8320(01)00027-8
24.
Udo
,
G.
,
2000
, “
Using Analytic Hierarchy Process to Analyze the Information Technology Outsourcing Decision
,”
Ind. Manage. Data Syst.
,
100
(
9
), pp.
421
429
.10.1108/02635570010358348
25.
Wang
,
L.
,
Chu
,
J.
, and
Wu
,
J.
,
2007
, “
Selection of Optimum Maintenance Strategies Based on a Fuzzy Analytic Hierarchy Process
,”
Int. J. Prod. Econ.
,
107
(
1
), pp.
151
163
.10.1016/j.ijpe.2006.08.005
26.
Bevilacqua
,
M.
, and
Braglia
,
M.
,
2000
, “
The Analytic Hierarchy Process Applied to Maintenance Strategy Selection
,”
Reliab. Eng. Syst. Saf.
,
70
(
1
), pp.
71
83
.10.1016/S0951-8320(00)00047-8
27.
Ananda
,
J.
, and
Herath
,
G.
,
2003
, “
The Use of Analytic Hierarchy Process to Incorporate Stakeholder Preferences into Regional Forest Planning
,”
For. Policy Econ.
,
5
(
1
), pp.
13
26
.10.1016/S1389-9341(02)00043-6
28.
Saaty
,
T.
,
1990
, “
How to Make a Decision: The Analytic Hierarchy Process
,”
Euro. J. Oper. Res.
,
48
(
1
), pp.
9
26
.10.1016/0377-2217(90)90057-I
29.
Boyce
,
W. E.
, and
DiPrima
,
R. C.
,
2005
,
Elementary Differential Equations and Boundary Value Problems
, 8th ed.,
Wiley
,
New York
.
You do not currently have access to this content.