In order to improve the thermodynamic efficiency of an internal combustion engine (ICE), a Stephenson-III six-bar linkage is optimized to serve as a replacement for the traditional slider–crank. Novel techniques are presented for formulating the design variables in the kinematic optimization that guarantee satisfaction of the Grashof condition and of transmission angle requirements without the need for an explicit constraint function. Additionally, a nested generalization of the popular NSGA-II algorithm is presented that allows simultaneous optimization of the kinematic, dynamic, and thermodynamic properties of the mechanism. This approach successfully solves the complex six-objective optimization problem, with challenges for future refinement including improvement of the combustion simulation to attain better accuracy without prohibitive computational expense.

References

References
1.
Heywood
,
J. B.
, and
Welling
,
O. Z.
,
2009
, “
Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1650
1662
.10.4271/2009-01-1892
2.
Shaik
,
A.
,
Moorthi
,
N. S. V.
, and
Rudramoorthy
,
R.
,
2007
, “
Variable Compression Ratio Engine: A Future Power Plant for Automobiles—An Overview
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
9
), pp.
1159
1168
.10.1243/09544070JAUTO573
3.
Ozcan
,
H.
, and
Yamin
,
J. A.
,
2008
, “
Performance and Emission Characteristics of LPG Powered Four Stroke SI Engine Under Variable Stroke Length and Compression Ratio
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1193
1201
.10.1016/j.enconman.2007.09.004
4.
Yamin
,
J. A.
, and
Dado
,
M. H.
,
2004
, “
Performance Simulation of a Four-Stroke Engine With Variable Stroke-Length and Compression Ratio
,”
Appl. Energy
,
77
(
4
), pp.
447
463
.10.1016/S0306-2619(03)00004-7
5.
Lipson
,
H.
,
2008
, “
Evolutionary Synthesis of Kinematic Mechanisms
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
03
), pp.
195
205
.10.1017/S0890060408000139
6.
Clune
,
J.
,
Beckmann
,
B. E.
,
Pennock
,
R. T.
, and
Ofria
,
C.
,
2011
, “
Hybrid: A Hybridization of Indirect and Direct Encodings for Evolutionary Computation
,”
Advances in Artificial Life. Darwin Meets von Neumann
,
Springer
,
Berlin, Germany
, pp.
134
141
.
7.
Sibling
,
K.
, and
Woschni
,
G.
,
1979
, “
Experimental Investigation of the Instantaneous Heat Transfer in the Cylinder of a High Speed Diesel Engine
,”
SAE Technical Paper No. 790833
.10.4271/790833
8.
Heywood
,
J.
,
Higgins
,
J. M.
,
Watts
,
P. A.
, and
Tabaczynski
,
R. J.
,
1979
, “
Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions
,”
SAE Technical Paper No. 7902981
.10.4271/790291
9.
Arakelian
,
V.
, and
Smith
,
M.
,
1999
, “
Complete Shaking Force and Shaking Moment Balancing of Linkages
,”
Mech. Mach. Theory
,
34
(
8
), pp.
1141
1153
.10.1016/S0094-114X(98)00067-6
10.
Sobieszczanski-Sobieski
,
J.
,
1982
, “
A Linear Decomposition Method for Large Optimization Problems: Blueprint for Development
,” NASA, Washington, DC, Technical Report No. NASA-TM-83248.
11.
Sobieszczanski-Sobieski
,
J.
,
James
,
B. B.
, and
Dovi
,
A. R.
,
1985
, “
Structural Optimization by Multilevel Decomposition
,”
AIAA J.
,
23
(
11
), pp.
1775
1782
.10.2514/3.9165
12.
Sullivan
,
T. A.
, and
van de ven
,
J. D.
,
2014
, “
Multi-Objective, Multi-Domain Genetic Optimization of a Hydraulic Rescue Spreader
,”
Mech. Mach. Theory
,
80
, pp.
35
51
.10.1016/j.mechmachtheory.2014.04.019
13.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.