Fully compliant bistable mechanisms (FCBMs) have numerous applications in both micro- and macroscale devices, but the nonlinearities associated with the deflections of the flexible members and the kinetostatic behaviors have made it difficult to design. Currently, the design of FCBMs relies heavily on nonlinear finite element modeling. In this paper, an analytical kinetostatic model is developed for FCBMs based on the beam constraint model (BCM) that captures the geometric nonlinearities of beam flexures that undergo relatively small deflections. An improved BCM (i.e., Timoshenko BCM (TBCM)) is derived based on the Timoshenko beam theory in order to include shear effects in the model. The results for three FCBM designs show that the kinetostatic model can successfully identify the bistable behaviors and make reasonable predictions for the locations of the unstable equilibrium points and the stable equilibrium positions. The inclusion of shear effects in the TBCM model significantly improves the prediction accuracy over the BCM model, as compared to the finite element analysis (FEA) results.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York.
2.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(2), pp.
137
146
.10.1109/JMEMS.2004.825308
3.
Hwang
,
I.
,
Shim
,
Y.
, and
Lee
,
J.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
.10.1088/0960-1317/13/6/318
4.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(3), pp.
273
280
.10.1109/JMEMS.2003.811751
5.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.10.1109/JMEMS.2005.859089
6.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.10.1115/1.2839009
7.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, in-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
.10.1115/1.2829477
8.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(4), pp.
701
708
.10.1115/1.1625399
9.
Jensen
,
B. D.
, and
Howell
,
L. L.
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(4), pp.
657
666
.10.1115/1.1760776
10.
Brake
,
M. R.
,
Baker
,
M. S.
,
Moore
,
N. W.
,
Crowson
,
D. A.
,
Mitchell
,
J. A.
, and
Houston
,
J. E.
,
2010
, “
Modeling and Measurement of a Bistable Beam in a Microelectromechanical System
,”
J. Microelectromech. Syst.
,
19
(
6
), pp.
1503
1514
.10.1109/JMEMS.2010.2076781
11.
Hansen
,
B. J.
,
Carron
,
C. J.
,
Jensen
,
B. D.
,
Hawkins
,
A. R.
, and
Schultz
,
S. M.
, “
Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1967
1972
.10.1088/0964-1726/16/5/055
12.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
,
2002
, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
,
12
(
3
), pp.
257
264
.10.1088/0960-1317/12/3/310
13.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
ASME Trans. Mech.
,
8
(
1
), pp.
304
326
10.1109/TMECH.2003.809156.
14.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.10.1016/j.mechmachtheory.2009.09.009
15.
Andò
,
B.
,
Baglio
,
S.
,
L'Episcopo
,
G.
, and
Trigona
,
C.
,
2012
, “
Investigation on Mechanically Bistable MEMS Devices for Energy Harvesting From Vibration
,”
J. Microelectromech. Syst.
(to be published).
16.
Tolou
,
M.
,
Estevez
,
P.
, and
Herder
,
J. L.
,
2011
, “
Collinear-Type Statically Balanced Compliant Micro Mechanism (SB-CMM): Experimental Comparison Between Pre-Curved and Straight Beams
,”
ASME
, No. DETC2011-4767810.1115/DETC2011-47678.
17.
Kim
,
C.
, and
Ebenstein
,
D.
,
2012
, “
Curve Decomposition for Large Deflection Analysis of Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanisms: Design and Testing
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041009
.10.1115/1.4007488
18.
Chen
,
G.
, and
Zhang
,
S.
,
2011
, “
Fully-Compliant Statically-Balanced Mechanisms Without Prestressing Assembly: Concepts and Case Studies
,”
Mech. Sci.
,
2
(
2
), pp.
169
174
.10.5194/ms-2-169-2011
19.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(2), p.
021002
.10.1115/1.3013316
20.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng
,
19
(2), p.
025011
.10.1088/0960-1317/19/2/025011
21.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.10.1115/1.4000529
22.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1198
1203
.10.1115/1.2771577
23.
Gerson
,
Y.
,
Krylov
,
S.
,
Ilic
,
B.
, and
Schreiber
,
D.
,
2008
, “
Large Displacement Low Voltage Multistable Micro Actuator
,” Proceedings of the
IEEE
21st International Conference on Micro Electro Mechanical Systems
, Tucson, AZ, Jan. 13–17. pp.
463
466
10.1109/MEMSYS.2008.4443693.
24.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators, A
,
167
(2), pp.
438
448
.10.1016/j.sna.2011.02.044
25.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.10.1115/1.4004543
26.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2013
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011007
.10.1115/1.4007941
27.
Jensen
,
B. D.
,
Parkinson
,
M. B.
,
Kurabayashi
,
K.
,
Howell
,
L. L.
, and
Baker
,
M. S.
,
2001
, “
Design Optimization of a Fully-Compliant Bistable Micro-Mechanism
,”
Proceedings of ASME IMECE
,
New York
, Nov. 11–16, Vol.
2
, pp.
2931
2937
.
28.
Cherry
,
B. B.
,
Howell
,
L. L.
, and
Jensen
,
B. D.
,
2009
, “
Evaluating Three-Dimensional Effects on the Behavior of Compliant Bistable Micromechanisms
,”
J. Micromech. Microeng
,
18
(9), p.
095001
.10.1088/0960-1317/18/9/095001
29.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.10.1115/1.2717231
30.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms–A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.10.1115/1.4002204
31.
Timoshenko
,
S.
,
1940
,
Strength of Materials: Part I, Elementary Theory and Problems
,
2nd ed.
,
Lancaster Press
,
Lancaster, PA
.
32.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.10.1115/1.3625046
33.
ANSYS, Inc.
,
2009
, Element Reference (Release 12.1), Canonsburg, PA.
34.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(5), p.
051002
.10.1115/1.4003922
35.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.10.1115/1.4023558
You do not currently have access to this content.