Self-folding structures have unique capability such as reconfiguration during their usage. Such capability can be beneficial for a wide variety of applications including biomedical and electronics products. In this paper, a novel fabrication approach based on a three-dimensional (3D) printing process is presented for fabricating self-folding structures that can be actuated in a heating environment. The thermo-actuating structures that are designed and fabricated by our method are two-dimensional (2D) origami sheets, which have multiple printed layers. The middle layer of an origami sheet is a prestrained polystyrene film with large shrinkage ratios when heated. Both its top and bottom surfaces are covered with cured resin that is printed in designed shapes. A foldable hinge is achieved by constraining the shrinkage of the film on one side while allowing the shrinkage of the film on another side when the origami sheet is exposed to a heating environment. Heuristic models of hinge's folding angles are developed based on the related folding mechanism. A 2D origami sheet design and fabrication method is presented for a given 3D structure. Various experimental tests are performed to verify the self-folding performance of the designed and fabricated origami sheets. Techniques on improving folding angle control are also discussed with possible applications.

References

References
1.
Randhawa
,
J. B. S.
,
2011
, “
Reconfigurable Self-Folding Microdevices
,” Ph.D. dissertations, ProQuest, UMI Dissertations Publishing. Johns Hopkins University.
2.
Pickett
,
G. T.
,
2007
, “
Self-Folding Origami Membranes
,”
EPL
,
78
(
4
), p.
48003
.10.1209/0295-5075/78/48003
3.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs
,”
Adv. Drug Delivery Rev.
,
64
(
14
), pp.
1579
1589
.10.1016/j.addr.2012.02.012
4.
Azam
,
A.
,
Laflin
,
K. E.
,
Jamal
,
M.
,
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2011
, “
Self-Folding Micropatterned Polymeric Containers
,”
Biomed. Microdevices
,
13
(
1
), pp.
51
58
.10.1007/s10544-010-9470-x
5.
Lendlein
,
A.
, and
Ionov
,
L.
,
2013
, “
Bioinspired Microorigami by Self-Folding Polymer Films
,”
Macromol. Chem. Phys.
,
214
(
11
), pp.
1178
1183
.10.1002/macp.201300098
6.
Stoychev
,
G.
,
Puretskiy
,
N.
, and
Ionov
,
L.
,
2011
, “
Self-Folding All-Polymer Thermoresponsive Microcapsules
,”
Soft Matter
,
7
(
7
), pp.
3277
3279
.10.1039/c1sm05109a
7.
Park
,
J.
,
Slanac
,
D. A.
,
Leong
,
T. G.
,
Hongke
,
Y.
,
Nelson
,
D. B.
, and
Gracias
,
D. H.
,
2008
, “
Reconfigurable Microfluidics With Metallic Containers
,”
J. Microelectromech. Syst.
,
17
(
2
), pp.
265
271
.10.1109/JMEMS.2008.916349
8.
Lang
,
R. J.
,
2003
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
A. K.
Peters
, Natick, MA.10.1201/b10706
9.
Luck
,
G. S.
,
2011
, “
Origami Polyhedra Design
,”
Math. Teacher
,
104
(
7
), p.
558
.
10.
Lang
,
R.
,
1996
, “
A Computational Algorithm for Origami Design
,”
Proceedings of the Twelfth Annual Symposium on Computational Geometry
, New York, May 24–26, pp.
98
105
.10.1145/237218.237249
11.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
Cambridge, New York
.10.1017/CBO9780511735172
12.
Kazuko
,
F.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.10.1115/1.4025384
13.
Tomohiro
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.10.1115/1.4025389
14.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
.10.1115/1.4025381
15.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.10.1115/1.4025372
16.
Reynolds
,
W. D.
,
Jeon
,
S. K.
,
Banik
,
J. A.
, and
Murphey
,
T. W.
,
2013
, “
Advanced Folding Approaches for Deployable Spacecraft Payloads
,”
ASME
Paper No. DETC2013-13378.10.1115/DETC2013-13378
17.
Deng
,
D.
, and
Chen
,
Y.
,
2013
, “
An Origami Inspired Additive Manufacturing Process for Building Thin-Shell Structures
,”
ASME
Paper No. IMECE2013-65720.10.1115/IMECE2013-65720
18.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
.10.1177/0278364908090235
19.
Wang
,
M.-F.
,
Maleki
,
T.
,
Maleki
,
T.
, and
Ziaie
,
B.
,
2008
, “
Enhanced 3-D Folding of Silicon Microstructures via Thermal Shrinkage of a Composite Organic/Inorganic Bilayer
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
882
889
.10.1109/JMEMS.2008.926138
20.
Smela
,
E.
,
2003
, “
Conjugated Polymer Actuators for Biomedical Applications
,”
Adv. Mater.
,
15
(
6
), pp.
481
494
.10.1002/adma.200390113
21.
Ionov
,
L.
,
2012
, “
Biomimetic 3D Self-Assembling Biomicroconstructs by Spontaneous Deformation of Thin Polymer Films
,”
J. Mater. Chem.
,
22
(
37
), pp.
19366
19375
.10.1039/c2jm31643a
22.
Ionov
,
L.
,
2011
, “
Soft Microorigami: Self-Folding Polymer Films
,”
Soft Matter
,
7
(
15
), pp.
6786
6791
.10.1039/c1sm05476g
23.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.10.1115/1.4025382
24.
Shim
,
T. S.
,
Kim
,
S.
,
Heo
,
C.
,
Jeon
,
H. C.
, and
Yang
,
S.
,
2012
, “
Controlled Origami Folding of Hydrogel Bilayers With Sustained Reversibility for Robust Microcarriers
,”
Angew. Chem. (International ed. in English)
,
51
(
6
), pp.
1420
1423
.10.1002/anie.201106723
25.
Stoychev
,
G.
,
Turcaud
,
S.
,
Dunlop
,
J. W. C.
, and
Ionov
,
L.
,
2013
, “
Hierarchical Multi-Step Folding of Polymer Bilayers
,”
Adv. Funct. Mater.
,
23
(
18
), pp.
2295
2300
.10.1002/adfm.201203245
26.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013-1240510.1115/DETC2013-12405.
27.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.10.1039/c1sm06564e
28.
Zhou
,
C.
,
Chen
,
Y.
,
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061004
.10.1115/1.4000416
29.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
SME J. Manuf. Processes
,
14
(
2
), pp.
107
118
.10.1016/j.jmapro.2011.10.002
30.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
.10.1115/1.4007465
31.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.10.1108/13552541311312148
32.
Deng
,
D.
, and
Chen
,
Y.
,
2014
, “
Self Folding Origami Structures Based on 3D Printing
,” May 8, https://www.youtube.com/watch?v=48-pt55zffs
You do not currently have access to this content.