Mode pursuing sampling (MPS) was developed as a global optimization algorithm for design optimization problems involving expensive black box functions. MPS has been found to be effective and efficient for design problems of low dimensionality, i.e., the number of design variables is less than 10. This work integrates the concept of trust regions into the MPS framework to create a new algorithm, trust region based mode pursuing sampling (TRMPS2), with the aim of dramatically improving performance and efficiency for high dimensional problems. TRMPS2 is benchmarked against genetic algorithm (GA), dividing rectangles (DIRECT), efficient global optimization (EGO), and MPS using a suite of standard test problems and an engineering design problem. The results show that TRMPS2 performs better on average than GA, DIRECT, EGO, and MPS for high dimensional, expensive, and black box (HEB) problems.

References

References
1.
Haftka
,
R.
,
Scott
,
E.
, and
Cruz
,
J.
,
1998
, “
Optimization and Experiments: A Survey
,”
ASME Appl. Mech. Rev.
,
51
(
7
), pp.
435
448
.10.1115/1.3099014
2.
Gu
,
L
.,
2001
, “
A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis
,” ASME Paper No. DAC-21063.
3.
Duddeck
,
F.
,
2008
, “
Multidisciplinary Optimization of Car Bodies
,”
Struct. Multidiscip. Optim.
,
35
(
4
), pp.
375
389
.10.1007/s00158-007-0130-6
4.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT, Cambridge
,
MA
.
5.
Bertsimas
,
D.
, and
Tsitsiklis
,
J.
,
1993
, “
Simulated Annealing
,”
Stat. Sci.
,
8
(
1
), pp.
10
15
.10.1214/ss/1177011077
6.
Poli
,
R.
,
Kennedy
,
J.
, and
Blackwell
,
T.
,
2007
, “
Particle Swarm Optimization: An Overview
,”
Swarm Intell.
,
1
(
1
), pp.
33
57
.10.1007/s11721-007-0002-0
7.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
8.
Jones
,
D.
,
Perttunen
,
C.
, and
Stuckman
,
B.
,
1993
, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
,
79
(
1
), pp.
157
181
.10.1007/BF00941892
9.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(
5
), pp.
1
11
.10.1115/1.4001597
10.
Zhan
,
Z.
,
Zhang
,
J.
,
Li
,
Y.
, and
Chung
,
H.
,
2009
, “
Adaptive Particle Swarm Optimization
,”
IEEE Trans. Syst., Man, Cybern., Part B
,
39
(
6
), pp.
1362
1381
.10.1109/TSMCB.2009.2015956
11.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G.
,
2004
, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
J. Eng. Optim.
,
36
(
4
), pp.
419
438
.10.1080/03052150410001686486
12.
Sharif
,
B.
,
Wang
,
G. G.
, and
ElMekkawy
,
T. Y.
,
2008
, “
Mode Pursuing Sampling Method for Discrete Variable Optimization on Expensive Black-Box Functions
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021402
.10.1115/1.2803251
13.
Duan
,
X.
,
Wang
,
G.
,
Kang
,
X.
,
Niu
,
Q.
,
Naterer
,
G.
, and
Peng
,
Q.
,
2009
, “
Performance Study of Mode-Pursuing Sampling Method
,”
J. Eng. Optim.
,
41
(
1
), pp.
1
21
.10.1080/03052150802345995
14.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
,
2000
,
Trust Region Methods
,
J. E.
Dennis
, ed.,
MPS-SIAM, Philadelphia
,
PA
.10.1137/1.9780898719857
15.
Addis
,
B.
, and
Leyffer
,
S.
,
2006
, “
A Trust Region Algorithm for Global Optimization
,”
Comput. Optim. Appl.
,
35
(
3
), pp.
287
304
.10.1007/s10589-006-8716-2
16.
Alexandrov
,
N.
,
Dennis
,
J.
,
Lewis
,
R.
, and
Torczon
,
V.
,
1997
, “
A Trust Region Framework for Managing the Use of Approximation Models in Optimization
,”
Struct. Optim.
,
15
(
1
), pp.
16
23
.10.1007/BF01197433
17.
Rodríguez
,
J.
,
Watson
,
L.
, and
Renaud
,
J. E.
,
1998
, “
Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization
,”
ASME Design Engineering Technical Conferences
, Vol.
120
(
1
), pp.
58
66
.
18.
Cheng
,
G.
, and
Wang
,
G.
,
2012
, “
Trust Region Based MPS Method for Global Optimization of High Dimensional Problems
,”
AIAA
Paper No. 2012-1590.10.2514/6.2012-1590
19.
Fu
,
J.
, and
Wang
,
L.
,
2002
, “
A Random-Discretization Based Monte Carlo Sampling Method and Its Applications
,”
Methodol. Comput. Appl. Probab.
,
4
(
1
), pp.
5
25
.10.1023/A:1015790929604
20.
SIMULIA
,
2009
, “
Isight: Automate Design Exploration and Optimization
.” Available at: http://www.simulia.com/download/products/Isight_Brochure_FINAL.pdf, Accessed 2014.
21.
Red Cedar Technology
,
2014
, “
SHERPA—An Efficient and Robust Optimization/Search Algorithm
.” Available at: http://www.redcedartech.com/pdfs/SHERPA.pdf, Accessed 2014.
22.
Houck
,
C.
,
Joines
,
J.
, and
Kay
,
M.
,
1995
, “
A Genetic Algorithm for Function Optimization: A Matlab Implementation
,”
ACM Trans. Math. Software
.
23.
Viana
,
F.
,
2013
, “
SURROGATES Toolbox
,” https://sites.google.com/site/felipeacviana/surrogatestoolbox, Accessed
2013
.
24.
Jones
,
D.
, 2001, “
The Direct Global Optimization Algorithm
,”
Encycl. Optim.
,
1
, pp.
431
440
.10.1007/0-306-48332-7_93
25.
Finkel
,
D.
,
2004
, “
Research and Codes
.” Available at: http://www4.ncsu.edu/∼ctk/Finkel_Direct/, Accessed
2013
.
26.
Schittkowski
,
K.
,
1987
,
More Test Examples for Nonlinear Programming Codes
(
Lecture Notes in Economics and Mathematical Systems
),
Springer-Verlag
,
New York
.10.1007/978-3-642-61582-5
27.
Hsu
,
Y.
,
Wang
,
S.
, and
Yu
,
C.
,
2003
, “
A Sequential Approximation Method Using Neural Networks for Engineering Design Optimization Problems
,”
Eng. Optim.
,
35
(
5
), pp.
489
511
.10.1080/03052150310001620713
28.
Thanedar
,
P.
,
1995
, “
Survey of Discrete Variable Optimization for Structural Design
,”
J. Struct. Eng.
,
121
(
3
), pp.
301
306
.10.1061/(ASCE)0733-9445(1995)121:2(301)
29.
Haji Hajikolaei
,
K.
,
Pirmoradi
,
Z.
, and
Wang
,
G.
, “
Decomposition for Large-Scale Global Optimization Based on Quantified Variable Correlations Uncovered by Metamodeling
,”
J. Eng. Optim.
(in press).10.1080/0305215X.2014.895338
30.
Schutte
,
J.
, and
Haftka
,
R.
,
2010
, “
Global Structural Optimization of a Stepped Cantilever Beam Using Quasi-Separable Decomposition
,”
Eng. Optim.
,
42
(
4
), pp.
347
367
.10.1080/03052150903220949
You do not currently have access to this content.