It is common in mechanical simulation to not know the value of key system parameters. When the simulation is very sensitive to those design parameters and practical or budget limitations prevent the user from measuring the real values, parameter identification methods become essential. Kalman filter methods and optimization methods are the most widespread approaches for the identification of unknown parameters in multibody systems. A novel gradient-based optimization method, based on sensitivity analyses for the computation of machine-precision gradients, is presented in this paper. The direct differentiation approach, together with the algorithmic differentiation of derivative terms, is employed to compute state and design sensitivities. This results in an automated, general-purpose and robust method for the identification of parameters. The method is applied to the identification of a real-life vehicle suspension system (namely of five stiffness coefficients) where both smooth and noisy reference responses are considered. The identified values are very close to the reference ones, and everything is carried out with limited user intervention and no manual computation of derivatives.

References

References
1.
Blundell
,
M.
, and
Harty
,
D.
,
2004
,
The Multibody Systems Approach to Vehicle Dynamics
,
Elsevier
, Oxford, UK.
2.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.10.1023/A:1009745432698
3.
Ryan
,
R.
,
1990
, “
Adams–Multibody System Analysis Software
,”
Multibody Systems Handbook
,
W.
Schiehlen
, ed.,
Springer
, Berlin, Germany, pp.
361
402
.
4.
Rulka
,
W.
,
1990
, “
Simpack–A Computer Program for Simulation of Large-Motion Multibody Systems
,”
Multibody Systems Handbook
,
W.
Schiehlen
, ed.,
Springer
, Berlin, Germany, pp.
265
284
.10.1007/978-3-642-50995-7_16
5.
García de Jalón
,
J.
,
Callejo
,
A.
, and
Hidalgo
,
A. F.
,
2012
, “
Efficient Solution of Maggi's Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021003
.10.1115/1.4005238
6.
Gautier
,
M.
, and
Khalil
,
W.
,
1990
, “
Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
368
373
.10.1109/70.56655
7.
Fisette
,
P.
,
Raucent
,
B.
, and
Samin
,
J.
,
1996
, “
Minimal Dynamic Characterization of Tree-Like Multibody Systems
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
165
184
.10.1007/BF01833299
8.
Moore
,
B.
,
Kövecses
,
J.
, and
Piedboeuf
,
J.
,
2003
, “
Symbolic Model Formulation for Dynamic Parameter Identification
,”
2003 ECCOMAS Thematic Conference on Multibody Dynamics
, Lisbon, Portugal, July 1–4, pp.
1
4
.
9.
Chen
,
K.
, and
Beale
,
D. G.
,
2003
, “
Base Dynamic Parameter Estimation of a MacPherson Suspension Mechanism
,”
Veh. Syst. Dyn.
,
39
(
3
), pp.
227
244
.10.1076/vesd.39.3.227.14151
10.
Cuadrado
,
J.
,
Dopico
,
D.
,
Pérez
,
J. A.
, and
Pastorino
,
R.
,
2012
, “
Automotive Observers Based on Multibody Models and the Extended Kalman Filter
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
3
19
.10.1007/s11044-011-9251-1
11.
Serban
,
R.
, and
Freeman
,
J. S.
,
2001
, “
Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems
,”
Multibody Syst. Dyn.
,
5
(4), pp.
335
350
.10.1023/A:1011434711375
12.
Kraus
,
C.
,
Bock
,
H.-G.
, and
Mutschler
,
H.
,
2005
, “
Parameter Estimation for Biomechanical Models Based on a Special Form of Natural Coordinates
,”
Multibody Syst. Dyn.
,
13
(
1
), pp.
101
111
.10.1007/s11044-005-4081-7
13.
Bottasso
,
C. L.
,
Prilutsky
,
B. I.
,
Croce
,
A.
,
Imberti
,
E.
, and
Sartirana
,
S.
,
2006
, “
A Numerical Procedure for Inferring From Experimental Data the Optimization Cost Functions Using a Multibody Model of the Neuro-Musculoskeletal System
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
123
154
.10.1007/s11044-006-9019-1
14.
Kim
,
H.-J.
,
Yoo
,
W.-S.
,
Ok
,
J.-K.
, and
Kang
,
D.-W.
,
2009
, “
Parameter Identification of Damping Models in Multibody Dynamic Simulation of Mechanical Systems
,”
Multibody Syst. Dyn.
,
22
(
4
), pp.
383
398
.10.1007/s11044-009-9163-5
15.
Carvalho
,
M.
, and
Ambrósio
,
J.
,
2010
, “
Identification of Multibody Vehicle Models for Crash Analysis Using an Optimization Methodology
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
325
345
.10.1007/s11044-010-9221-z
16.
Vyasarayani
,
C. P.
,
Uchida
,
T.
, and
McPhee
,
J.
,
2011
, “
Parameter Identification in Multibody Systems Using Lie Series Solutions and Symbolic Computation
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041011
.10.1115/1.4003686
17.
Vyasarayani
,
C. P.
,
Uchida
,
T.
,
Carvalho
,
A.
, and
McPhee
,
J.
,
2011
, “
Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach
,”
Multibody Syst. Dyn.
,
26
(
4
), pp.
411
424
.10.1007/s11044-011-9260-0
18.
Haug
,
E. J.
,
1987
, “
Design Sensitivity Analysis of Dynamic Systems
,”
Computer Aided Optimal Design: Structural and Mechanical Systems
,
Springer
,
Berlin, Germany
, pp.
705
755
.10.1007/978-3-642-83051-8_22
19.
Griewank
,
A.
, and
Walther
,
A.
, 2008,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
,
SIAM, Frontiers in Applied Mathematics
, Philadelphia, PA.
20.
Pacejka
,
H.
,
2005
,
Tyre and Vehicle Dynamics
,
Elsevier
,
Oxford, UK
.
21.
Etman
,
L. F. P.
,
1997
, “
Optimization of Multibody Systems Using Approximation Concepts
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
22.
Callejo
,
A.
,
2013
, “
Dynamic Response Optimization of Vehicles Through Efficient Multibody Formulations and Automatic Differentiation Techniques
,” Ph.D. thesis, Universidad Politécnica de Madrid, Madrid, Spain.
23.
Gutiérrez-López
,
M. D.
,
Callejo
,
A.
, and
García de Jalón
,
J.
,
2012
, “
Computation of Independent Sensitivities Using Maggi's Formulation
,”
Proceedings of the IMSD2012-The 2nd Joint International Conference on Multibody System Dynamics
, P. Eberhard and P. Ziegler, eds., Stuttgart, Germany, May 29–June 1.
24.
Krishnaswami
,
P.
, and
Bhatti
,
M. A.
,
1984
, “
A General Approach for Design Sensitivity Analysis of Constrained Dynamic Systems
,”
ASME
Paper No. 84-DET-132.
25.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
,
1985
, “
Optimal Design of Mechanical Systems With Constraint Violation Stabilization Method
,”
ASME J. Mech. Transm. Autom. Des.
,
107
(4), pp.
493
498
.10.1115/1.3260751
26.
Serban
,
R.
, and
Freeman
,
J. S.
,
1996
, “
Direct Differentiation Methods for the Design Sensitivity of Multibody Dynamic Systems
,”
ASME
Paper No. 96-DETC/DAC-1087.
27.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
,
NY
.
28.
Wang
,
X.
,
Haug
,
E. J.
, and
Pan
,
W.
,
2005
, “
Implicit Numerical Integration for Design Sensitivity Analysis of Rigid Multibody Systems
,”
Mech. Based Des. Struct. Mach.
,
33
(
1
), pp.
1
30
.10.1081/SME-200045801
29.
Dopico
,
D.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2014
, “
Direct and Adjoint Sensitivity Analysis of ODE Multibody Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011012
.10.1115/1.4026492
30.
Walther
,
A.
, and
Griewank
,
A.
,
2010
, A Package for the Automatic Differentiation of Algorithms Written in C/C++, available at: https://projects.coin-or.org/ADOL-C
31.
Besselink
,
I.
, and
Van Asperen
,
F.
,
1994
, “
Numerical Optimization of the Linear Dynamic Behaviour of Commercial Vehicles
,”
Veh. Syst. Dyn.
,
23
(
1
), pp.
53
70
.10.1080/00423119408969049
32.
Baumal
,
A.
,
McPhee
,
J.
, and
Calamai
,
P.
,
1998
, “
Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System
,”
Comput. Methods Appl. Mech. Eng.
,
163
(
1
), pp.
87
94
.10.1016/S0045-7825(98)00004-8
33.
Thoresson
,
M.
,
2007
, “
Efficient Gradient-Based Optimisation of Suspension Characteristics for an Off-Road Vehicle
,” Ph.D. thesis, University of Pretoria, Pretoria, South Africa.
34.
Gonçalves
,
J.
,
2002
, “
Rigid and Flexible Multibody Systems Optimization for Vehicle Dynamics
,” Ph.D. thesis, Instituto Superior Técnico, Lisboa, Portugal.
35.
Naudé
,
A.
, and
Snyman
,
J.
,
2003
, “
Optimisation of Road Vehicle Passive Suspension Systems. Part 2. Qualification and Case Study
,”
Appl. Math. Modell.
,
27
(
4
), pp.
263
274
.10.1016/S0307-904X(02)00121-X
36.
Gonçalves
,
J. P. C.
, and
Ambrósio
,
J. A. C.
,
2005
, “
Road Vehicle Modeling Requirements for Optimization of Ride and Handling
,”
Multibody Syst. Dyn.
,
13
(
1
), pp.
3
23
.10.1007/s11044-005-2528-5
37.
Andersson
,
D.
, and
Eriksson
,
P.
,
2004
, “
Handling and Ride Comfort Optimisation of an Intercity Bus
,”
Veh. Syst. Dyn.
,
41
, pp.
547
556
.
38.
Wright
,
S.
, and
Nocedal
,
J.
,
1999
,
Numerical Optimization
,
Springer
,
New York
.
You do not currently have access to this content.