Traditionally, origami-based structures are designed on the premise of “rigid folding,” However, every act of folding and unfolding is accompanied by elastic deformations in real structures. This study focuses on these elastic deformations in order to expand origami into a new method of designing morphing structures. The authors start by proposing a simple model for evaluating elastic deformation in nonrigid origami structures. Next, these methods are applied to deployable plate models. Initial strain is introduced into the elastic parts as actuators for deployment. Finally, by using the finite element method (FEM), it is confirmed that the proposed system can accomplish the complete deployment in 3 × 3 Miura-or model.

References

References
1.
Miura
,
K.
,
2009
, “
Triangles and Quadrangles in Space
,”
Proceedings of the Symposium of the International Association for Shell and Spatial Structures
,
A.
Domingo
, and
C.
Carlos Lazaro
, ed., Editorial de la Universidad Politecnica de Valencia,
Valencia, Spain
, pp.
27
38
.
2.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
PNAS
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
3.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
,“
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.10.1039/c1sm06564e
4.
Kobayashi
,
H.
,
Kresling
,
B.
, and
Vincent
,
J. F. V.
,
1998
, “
Geometry and Mechanics Simulations of Growth Patterns and Caleopteta
,”
Biomimetics
,
3
, pp.
105
122
.
5.
Kobayashi
,
H.
,
Daimaruya
,
H.
, and
Vincent
,
J. F. V.
,
2000
, “
Folding/Unfolding Manner of Tree Leaves as Deployable Structures
,”
Solid Mech. Appl.
,
80
, pp.
211
220
.
6.
Kobayashi
,
H.
,
Daimaruya
,
H.
, and
Fujita
,
H.
,
2003
, “
Unfolding of Morning Glory Flower as Deployable Structures
,”
Solid Mech. Appl.
,
106
, pp.
207
216
.
7.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Proceedings of the 4OSME
, pp.
175
187
. Available at: http://www.tsg.ne.jp/TT/software/index.html#rigid_origami
8.
Wu
,
W.
, and
You
,
Z.
,
2011
, “
A Solution for Folding Rigid Tall Shopping Bags
,”
Proc. R. Soc. A
,
467
(
2133
), pp.
2561
2574
.10.1098/rspa.2011.0120
9.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.10.1115/1.2901553
10.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.10.1115/1.2901554
11.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.10.1115/1.2787212
12.
Nojima
,
T.
,
2002
, “
Modeling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. C
,
45
(
1
), p.
364
.10.1299/jsmec.45.364
13.
Nojima
,
T.
,
2003
, “
Modeling of Compact Folding/Wrapping of Flat Circular Membranes
,”
JSME Int. C
,
46
(
4
), p.
154
.
14.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.
15.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hart
,
V.
,
Price
,
G. N.
, and
Tachi
,
T.
,
2009
, “
(Non)Existence of Pleated Folds: How Paper Folds Between Creases
,”
Graphs Combin.
,
27
(
3
), pp.
377
397
.10.1007/s00373-011-1025-2
You do not currently have access to this content.