Uncertainty is a very critical but inevitable issue in design optimization. Compared to single-objective optimization problems, the situation becomes more difficult for multi-objective engineering optimization problems under uncertainty. Multi-objective robust optimization (MORO) approaches have been developed to find Pareto robust solutions. While the literature reports on many techniques in MORO, few papers focus on using multi-objective differential evolution (MODE) for robust optimization (RO) and performance improvement of its solutions. In this article, MODE is first modified and developed for RO problems with interval uncertainty, formulating a new MODE-RO algorithm. To improve the solutions’ quality of MODE-RO, a new hybrid (MODE-sequential quadratic programming (SQP)-RO) algorithm is proposed further, where SQP is incorporated into the procedure to enhance the local search. The proposed hybrid approach takes the advantage of MODE for its capability of handling not-well behaved robust constraint functions and SQP for its fast local convergence. Two numerical and one engineering examples, with two or three objective functions, are tested to demonstrate the applicability and performance of the proposed algorithms. The results show that MODE-RO is effective in solving MORO problems while, on the average, MODE-SQP-RO improves the quality of robust solutions obtained by MODE-RO with comparable numbers of function evaluations.

References

References
1.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
,
2002
, “
Robust Optimization–Methodology and Applications
,”
Math. Prog.
,
92
(
3
), pp.
453
480
.10.1007/s101070100286
2.
Park
,
G. J.
,
Lee
,
T. H.
,
Kwon
,
H. L.
, and
Hwang
,
K. H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.10.2514/1.13639
3.
Hajimiragha
,
A. H.
,
Canizares
,
C. A.
,
Fowler
,
M. W.
,
Moazeni
,
S.
, and
Elkamel
,
A.
,
2010
, “
A Robust Optimization Approach for Planning the Transition to Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Power Syst.
,
26
(
4
), pp.
2264
2274
.10.1109/TPWRS.2011.2108322
4.
Ferreira
,
R. S.
,
Barroso
,
L. A.
, and
Carvalho
,
M. M.
,
2012
, “
Demand Response Models With Correlated Price Data: A Robust Optimization Approach
,”
Appl. Energy
,
96
, pp.
133
149
.10.1016/j.apenergy.2012.01.016
5.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(6), pp.
521
530
.10.1080/00207547808930043
6.
Riley
,
M. E.
, and
Grandhi
,
R. V.
,
2011
, “
Quantification of Model-Form and Predictive Uncertainty for Multi-Physics Simulation
,”
Comput. Struct.
,
89
(
11
), pp.
1206
1213
.10.1016/j.compstruc.2010.10.004
7.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
74
80
.10.1115/1.2919328
8.
Hughes
,
E.
,
2001
, “
Evolutionary Multi-Objective Ranking With Uncertainty and Noise
,”
Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization
,
Switzerland
, Mar. 7–9, Springer-Verlag, London, UK, pp.
329
343
.10.1007/3-540-44719-9_23
9.
Tsutsui
,
S.
, and
Ghosh
,
A.
,
1997
, “
Genetic Algorithms With a Robust Solution Searching Scheme
,”
IEEE Trans. Evol. Comput.
,
1
(
3
), pp.
201
208
.10.1109/4235.661550
10.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.10.1115/1.1561042
11.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.10.1016/j.cma.2007.03.003
12.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2005
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Design
,
128
(4), pp.
901
908
.10.1115/1.2204970
13.
Du
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2007
, “
Robust Design Concept in Possibility Theory and Optimization for System With Both Random and Fuzzy Input Variables
,”
ASME
Paper No. DETC2007-35106. 10.1115/DETC2007-35106
14.
Deb
,
K.
, and
Gupta
,
H.
,
2006
, “
Introducing Robustness in Multi-Objective Optimization
,”
Evol. Comput.
,
14
(
4
), pp.
463
494
.10.1162/evco.2006.14.4.463
15.
Gaspar-Cunha
,
A.
, and
Covas
,
J. A.
,
2007
, “
Robustness in Multi-Objective Optimization Using Evolutionary Algorithms
,”
Comput. Optim. Appl.
,
39
(
1
), pp.
75
96
.10.1007/s10589-007-9053-9
16.
Gunawan
,
S.
, and
Azarm
,
S.
,
2005
, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
,
29
(
1
), pp.
50
60
.10.1007/s00158-004-0450-8
17.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.10.1115/1.2202884
18.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.10.1115/1.4003918
19.
Deb
,
K.
,
Gupta
,
S.
,
Daum
,
D.
, and
Branke
,
J.
,
2009
, “
Reliability-Based Optimization Using Evolutionary Algorithm
,”
IEEE Trans. Evol. Comput.
,
13
(
5
), pp.
1054
1074
.10.1109/TEVC.2009.2014361
20.
Dudy
,
L.
,
Yaochu
,
J.
,
Yew-Soon
,
O.
, and
Sendhoff
,
B.
,
2010
, “
Generalizing Surrogate-Assisted Evolutionary Computation
,”
IEEE Trans. Evol. Comput.
,
134
(
3
), pp.
329
355
.10.1109/TEVC.2009.2027359
21.
Daum
,
D. A.
,
Deb
,
K.
, and
Branke
,
J.
,
2007
, “
Reliability-Based Optimization for Multiple Constraints With Evolutionary Algorithms
,”
IEEE
Congress on Evolutionary Computation, Singapore, Sept. 25–28, pp.
911
918
.10.1109/CEC.2007.4424567
22.
Yew-Soon
,
O.
,
Nair
,
P. B.
, and
Lum
,
K. Y.
,
2006
, “
Max–Min Surrogate-Assisted Evolutionary Algorithm for Robust Design
,”
IEEE Trans. Evol. Comput.
,
10
(
4
), pp.
392
404
.10.1109/TEVC.2005.859464
23.
Saha
,
A.
,
Ray
,
T.
, and
Smith
,
W.
,
2011
, “
Towards Practical Evolutionary Robust Multi-Objective Optimization
,”
IEEE
Congress on Evolutionary Computation, New Orleans, LA, June 5–8, pp.
2123
2130
.10.1109/CEC.2011.5949877
24.
Kukkonen
,
S.
, and
Lampinen
,
J.
,
2004
, “
An Extension of Generalized Differential Evolution for Multi-Objective Optimization
,”
8th International Conference
,
Birmingham
,
UK
, Sept. 18–22, pp.
752
761
.10.1007/978-3-540-30217-9_76
25.
Kukkonen
,
S.
, and
Lampinen
,
J.
,
2005
, “
GDE3: The Third Evolution Step of Generalized Differential Evolution
,”
IEEE
Congress on Evolutionary Computation, Edinburgh,
Scotland
, Sept. 5, Vol.
1
, pp.
443
450
.10.1109/CEC.2005.1554717
26.
Kumar
,
A.
,
Sharma
,
D.
, and
Deb
,
K.
,
2007
, “
A Hybrid Multi-Objective Optimization Procedure Using PCX Based NSGA-II and Sequential Quadratic Programming
,”
Proceedings of the Congress on Evolutionary Computation (CEC-2007)
, Singapore, Sept. 25–28, pp.
3011
3018
.10.1109/CEC.2007.4424855
27.
Gao
,
X.
,
Chen
,
B.
,
He
,
X.
,
Qiu
,
T.
,
Li
,
J.
,
Wang
,
C.
, and
Zhang
,
L.
,
2008
, “
Multi-Objective Optimization for the Periodic Operation of the Naphtha Pyrolysis Process Using a New Parallel Hybrid Algorithm Combining NSGA-II With SQP
,”
Comput. Chem. Eng.
,
32
(
11
), pp.
2801
2811
.10.1016/j.compchemeng.2008.01.005
28.
Mansoornejad
,
B.
,
Mostoufi
,
N.
, and
Jalali-Farahani
,
F.
,
2008
, “
A Hybrid GA–SQP Optimization Technique for Determination of Kinetic Parameters of Hydrogenation Reactions
,”
Comput. Chem. Eng.
,
32
(
7
), pp.
1447
1455
.10.1016/j.compchemeng.2007.06.018
29.
Hu
,
X.
,
Huang
,
Z.
, and
Wang
,
Z.
,
2003
, “
Hybridization of the Multi-Objective Evolutionary Algorithms and the Gradient-Based Algorithms
,”
2003 Congress on Evolutionary Computation
, CEC’03, Canberra, Australia, Dec. 8–12, Vol.
2
, pp.
870
877
.10.1109/CEC.2003.1299758
30.
Knowles
,
J.
, and
Corne
,
D.
,
2005
, “
Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects
,”
Recent Advances Memetic Algorithms
,
Springer, Berlin
,
Germany
, pp.
313
352
.10.1007/3-540-32363-5_14
31.
Ishibuchi
,
H.
,
Yoshida
,
T.
, and
Murata
,
T.
,
2003
, “
Balance Between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
204
223
.10.1109/TEVC.2003.810752
32.
Chiang
,
T.-C.
, and
Fu
,
L.-C.
,
2010
, “
An Improved Multiobjective Memetic Algorithm for Permutation Flow Shop Scheduling
,”
IEEE Congress on Evolutionary Computation
,
Barcelona
, July 18–23, pp.
1
8
.10.1109/CEC.2010.5586141
33.
Ono
,
S.
, and
Nakayama
,
S.
,
2009
, “
Multi-Objective Particle Swarm Optimization for Robust Optimization and Its Hybridization With Gradient Search
,”
IEEE
Congress on Evolutionary Computation, CEC'09, Trondheim, May 18–21, pp.
1629
1636
.10.1109/CEC.2009.4983137
34.
Li
,
M.
,
2007
, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications
,” Ph.D. thesis, University of Maryland, College Park, MD.
35.
Tušar
,
T.
, and
Filipič
,
B.
,
2007
, “
Differential Evolution Versus Genetic Algorithms in Multiobjective Optimization
,”
Evolutionary Multi-Criterion Optimization
,
S.
Obayashi
,
K.
Deb
,
C.
Poloni
,
T.
Hiroyasu
, and
T.
Murata
, eds.,
Springer
,
Berlin, Germany
, pp.
257
271
.
36.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
37.
Zhou
,
J.
,
Cheng
,
S.
, and
Li
,
M.
,
2012
, “
Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100913
.10.1115/1.4007392
38.
Deb
,
K.
,
2001
,
Multiobjective Optimization Using Evolutionary Algorithms
,
Wiley
,
NY
.
39.
Arora
,
J. S.
,
2004
,
Introduction to Optimum Design
,
Elsevier
,
NY
.
40.
Sarker
,
R.
, and
Abbass
,
H. A.
,
2004
, “
Differential Evolution for Solving Multi-Objective Optimization Problems
,”
Asia-Pacific J. Oper. Res.
,
21
(2), pp.
225
240
.10.1142/S0217595904000217
41.
Santana-Quintero
,
L. V.
, and
Coello Coello
,
C. A.
,
2005
, “
An Algorithm Based on Differential Evolution for Multi-Objective Problems
,”
Int. J. Comput. Intell. Res.
,
1
(
2
), pp.
151
169
.10.5019/j.ijcir.2005.32
42.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
43.
Mezura-Montes
,
E.
,
Coello Coello
,
C.
, and
Tun-Morales
,
E.
,
2004
, “
Simple Feasibility Rules and Differential Evolution for Constrained Optimization
,”
Proceedings of the 3rd Mexican International Conference on Artificial Intelligence
, Mexico, City, Mexico, Apr. 26–30,
Springer-Verlag
, Berlin, Heidelberg, pp.
707
716
.10.1007/978-3-540-24694-7_73
44.
Haimes
,
Y.
,
Lasdon
,
L.
, and
Wismer
,
D.
,
1971
, “
On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization
,”
IEEE Trans. Syst., Man Cybern.
,
1
(
3
), pp.
296
297
.10.1109/TSMC.1971.4308298
45.
Azarm
,
S.
, and
Wu
,
J.
,
2001
, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.10.1115/1.1329875
46.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2001
, “
Scalable Test Problems for Evolutionary Multi-Objective Optimization
,” TIK-Technical Report No. 112.
47.
Narayanan
,
S.
, and
Azarm
,
S.
,
1999
, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Optim.
,
18
(
2
), pp.
146
155
.10.1007/BF01195989
You do not currently have access to this content.