Rigid-body mechanisms (RBMs) and compliant mechanisms (CMs) are traditionally treated in significantly different ways. In this paper, we present a synthesis approach that is appropriate for both RBMs and CMs. In this approach, RBMs and CMs are generalized into modularized mechanisms that consist of five basic modules, including compliant links (CLs), rigid links (RLs), pin joints (PJs), compliant joints (CJs), and rigid joints (RJs). The link modules and joint modules are modeled through beam elements and hinge elements, respectively, in a geometrically nonlinear finite-element solver, and subsequently a beam-hinge ground structure model is proposed. Based on this new model, a link and joint determination approach—module optimization—is developed for the type and dimensional synthesis of both RBMs and CMs. In the module optimization approach, the states (both presence or absence and sizes) of joints and links are all design variables, and one may obtain an RBM, a partially CM, or a fully CM for a given mechanical task. Three design examples of path generators are used to demonstrate the effectiveness of the proposed approach to the type and dimensional synthesis of RBMs and CMs.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1997
,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Freudenstein
,
F.
, and
Dobrjanskyj
,
L.
,
1966
, “
On a Theory for the Type Synthesis of Mechanisms
,”
Applied Mechanics
,
H.
Görtler
, ed.,
Springer
,
Berlin
, pp.
420
428
.
4.
Zhang
,
W. J.
, and
Li
,
Q.
,
1999
, “
On a New Approach to Mechanism Topology Identification
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
57
64
.
5.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Methods Eng.
,
61
(
9
), pp.
1520
1545
.
6.
Kawamoto
,
A.
,
2005
, “
Path-Generation of Articulated Mechanisms by Shape and Topology Variations in Non-Linear Truss Representation
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1557
1574
.
7.
Eberhard
,
P.
,
Gaugele
,
T.
, and
Sedlaczek
,
K.
,
2009
, “
Topology Optimized Synthesis of Planar Kinematic Rigid Body Mechanisms
,”
Advanced Design of Mechanical Systems: From Analysis to Optimization
,
J. A. C.
Ambrosio
and
P.
Eberhard
, eds.,
Springer-Verlag
,
Vienna, Austria
, pp.
287
302
.
8.
Eberhard
,
P.
, and
Sedlaczek
,
K.
,
2009
, “
Grid-Based Topology Optimization of Rigid Body Mechanisms
,”
Advanced Design of Mechanical Systems: From Analysis to Optimization
,
J. C.
Ambrósio
and
P.
Eberhard
, eds.,
Springer
,
Vienna, Austria
, pp.
303
315
.
9.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021011
.
10.
Kim
,
Y. Y.
,
Jang
,
G.-W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2006
, “
Automatic Synthesis of a Planar Linkage Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
.
11.
Ananthasuresh
,
G. K.
,
1994
, “
A New Design Paradigm for Micro-Electro-Mechanical Systems and Investigations on the Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
12.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
2000
, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
,
28
(
4
), pp.
245
280
.
13.
Joo
,
J. Y.
, and
Kota
,
S.
,
2004
, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
,
32
(
1
), pp.
17
38
.
14.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), p.
238
.
15.
Ramrakhyani
,
D.
,
Frecker
,
M.
, and
Lesieutre
,
G.
,
2009
, “
Hinged Beam Elements for the Topology Design of Compliant Mechanisms Using the Ground Structure Approach
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
557
567
.
16.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
17.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
18.
Su
,
H. J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), pp.
1
8
.
19.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. M.
,
2006
, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
542
550
.
20.
Cao
,
L.
,
Dolovich
,
A. T.
, and
Zhang
,
W. J.
,
2015
, “
Hybrid Compliant Mechanism Design Using a Mixed Mesh of Flexure Hinge Elements and Beam Elements Through Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092303
.
21.
He
,
P. R.
,
Zhang
,
W. J.
,
Li
,
Q.
, and
Wu
,
F. X.
,
2003
, “
A New Method for Detection of Graph Isomorphism Based on the Quadratic Form
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
640
642
.
22.
Kong
,
F. G.
,
Li
,
Q.
, and
Zhang
,
W. J.
,
1999
, “
An Artificial Neural Network Approach to Mechanism Kinematic Chain Isomorphism Identification
,”
Mech. Mach. Theory
,
34
(
2
), pp.
271
283
.
23.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
,
1996
, “
The Topological Synthesis of Compliant Mechanisms
,”
Mech. Mach. Theory
,
31
(
2
), pp.
185
199
.
24.
van der Werff
,
K.
,
1977
, “
Kinematic and Dynamic Analysis of Mechanisms: A Finite Element Approach
,” Ph.D. dissertation, Delft University of Technology, Delft, The Netherlands.
25.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
26.
Trease
,
B. P.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2004
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
27.
Martin
,
J.
, and
Robert
,
M.
,
2011
, “
Novel Flexible Pivot With Large Angular Range and Small Center Shift to Be Integrated Into a Bio-Inspired Robotic Hand
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1431
1437
.
28.
Dao
,
T. P.
, and
Huang
,
S. C.
,
2013
, “
Design and Analysis of Compliant Rotary Joint
,”
Appl. Mech. Mater.
,
372
, pp.
467
470
.
29.
Hou
,
C. W.
, and
Lan
,
C. C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.
30.
Kang
,
D.
, and
Gweon
,
D.
,
2013
, “
Analysis and Design of a Cartwheel-Type Flexure Hinge
,”
Precis. Eng.
,
37
(
1
), pp.
33
43
.
31.
Jonker
,
J. B.
,
1989
, “
A Finite Element Dynamic Analysis of Spatial Mechanisms With Flexible Links
,”
Comput. Methods Appl. Mech.
,
76
(
1
), pp.
17
40
.
32.
Zhang
,
W. J.
, and
van der Werf
,
K.
,
1998
, “
Automatic Communication From a Neutral Object Model of Mechanism to Mechanism Analysis Programs Based on a Finite Element Approach in a Software Environment for CADCAM of Mechanisms
,”
Finite Elem. Anal. Des.
,
28
(
3
), pp.
209
239
.
33.
Zhang
,
W. J.
,
1994
, “
An Integrated Environment for CAD/CAM of Mechanical Systems
,” Ph.D. dissertation, Delft University of Technology, Delft, The Netherlands.
34.
Hetrick
,
J. A.
,
1999
, “
An Energy Efficiency Approach for Unified Topological and Dimensional Synthesis of Compliant Mechanisms
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
35.
Norton
,
R. L.
,
2004
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill Higher Education
, New York.
36.
Aarts
,
R. G. K. M.
,
Meijaard
,
J. P.
, and
Jonker
,
J. B.
,
2011
, “
spacar User Manual
,” University of Twente, Enschede, The Netherlands, Report No. WA-1299.
37.
Riverhawk Company
,
2014
, “
Flexural Pivots
,” http://direct.daitron.co.jp/pdf/Riverhawk-FlexuralPivotCatalog.pdf
38.
MathWorks
,
2015
, “
Global Optimization Toolbox User's Guide (R2015a)
,” http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
39.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Longman Publishing
,
Boston, MA
.
You do not currently have access to this content.