Additive manufacturing (AM) is emerging as an important manufacturing process and a key technology for enabling innovative product development. Design for additive manufacturing (DFAM) is nowadays a major challenge to exploit properly the potential of AM in product innovation and product manufacturing. However, in recent years, several DFAM methods have been developed with various design purposes. In this paper, we first present a state-of-the-art overview of the existing DFAM methods, then we introduce a classification of DFAM methods based on intermediate representations (IRs) and product's systemic level, and we make a comparison focused on the prospects for product innovation. Furthermore, we present an assembly based DFAM method using AM knowledge during the idea generation process in order to develop innovative architectures. A case study demonstrates the relevance of such approach. The main contribution of this paper is an early DFAM method consisting of four stages as follows: choice and development of (1) concepts, (2) working principles, (3) working structures, and (4) synthesis and conversion of the data in design features. This method will help designers to improve their design features, by taking into account the constraints of AM in the early stages.

References

References
1.
Perrin
,
J.
,
2001
,
Concevoir L'innovation Industrielle: Méthodologie de Conception de L'innovation
,
CNRS
,
Paris
.
2.
Kelly
,
P.
, and
Kranzberg
,
M.
,
1978
,
Technological Innovation: A Critical Review of Current Knowledge
,
San Francisco Press
,
San Francisco, CA
.
3.
Schmitt
,
L.
,
Buisine
,
S.
,
Chaboissier
,
J.
,
Aoussat
,
A.
, and
Vernier
,
F.
,
2012
, “
Dynamic Tabletop Interfaces for Increasing Creativity
,”
Comput. Hum. Behav.
,
28
(
5
), pp.
1892
1901
.
4.
Tödtling
,
F.
,
Lehner
,
P.
, and
Kaufmann
,
A.
,
2009
, “
Do Different Types of Innovation Rely on Specific Kinds of Knowledge Interactions?
Technovation
,
29
(
1
), pp.
59
71
.
5.
Teece
,
D. J.
,
1986
, “
Profiting From Technological Innovation: Implications for Integration, Collaboration, Licensing and Public Policy
,”
Res. Policy
,
15
(
6
), pp.
285
305
.
6.
ASTM
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,” ASTM F2792-12a.
7.
Culverhouse
,
P. F.
,
1995
, “
Constraining Designers and Their CAD Tools
,”
Des. Stud.
,
16
(
1
), pp.
81
101
.
8.
Hague
,
R.
,
Campbell
,
I.
, and
Dickens
,
P.
,
2003
, “
Implications on Design of Rapid Manufacturing
,”
J. Mech. Eng. Sci.
,
217
(
1
), pp.
25
30
.
9.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
10.
Gibson
,
I.
,
Rosen
,
D. R.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer US
,
New York
.
11.
Tomiyama
,
T.
,
Gu
,
P.
,
Jin
,
Y.
,
Lutters
,
D.
,
Kind
,
C.
, and
Kimura
,
F.
,
2009
, “
Design Methodologies: Industrial and Educational Applications
,”
CIRP Ann. Manuf. Technol.
,
58
(
2
), pp.
543
565
.
12.
Pahl
,
G.
, and
Beitz
,
W.
,
2007
,
Engineering Design—A Systematic Approach
,
3rd ed.
,
Springer
,
London, UK
.
13.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
CIRP Conference on Manufacturing Systems
, pp.
632
637
.
14.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1
), pp.
327
342
.
15.
Ullman
,
D. G.
, and
Jones
,
E. A.
,
2003
,
The Mechanical Design Process
,
McGraw-Hill Higher Education
,
New York
.
16.
Ishii
,
K.
,
1995
, “
Life-Cycle Engineering Design
,”
ASME J. Vib. Acoust.
,
117
(B), pp.
42
47
.
17.
Wang
,
L.
,
Shen
,
W.
,
Xie
,
H.
,
Neelamkavil
,
J.
, and
Pardasani
,
A.
,
2002
, “
Collaborative Conceptual Design: State of the Art and Future Trends
,”
Comput. Aided Des.
,
34
(
13
), pp.
981
996
.
18.
Garetti
,
M.
,
Terzi
,
S.
,
Bertacci
,
N.
, and
Brianza
,
M.
,
2005
, “
Organisational Change and Knowledge Management in PLM Implementation
,”
Int. J. Prod. Lifecycle Manage.
,
1
(
1
), pp.
43
51
.
19.
Sharma
,
A.
,
2005
, “
Collaborative Product Innovation: Integrating Elements of CPI Via PLM Framework
,”
Comput. Aided Des.
,
37
(
13
), pp.
1425
1434
.
20.
Huang
,
G. Q.
,
1996
,
Design for X—Concurrent Engineering Imperatives
,
Chapman & Hall
,
London
.
21.
Bouchard
,
C.
,
Camous
,
R.
, and
Aoussat
,
A.
,
2005
, “
Nature and Role of Intermediate Representations (IR) in the Design Process: Case Studies in Car Design
,”
Int. J. Veh. Des.
,
38
(
1
), pp.
1
25
.
22.
Pei
,
E.
,
Campbell
,
I.
, and
Evans
,
M.
,
2011
, “
A Taxonomic Classification of Visual Design Representations Used by Industrial Designers and Engineering Designers
,”
Des. J.
,
14
(
1
), pp.
64
91
.
23.
Kuo
,
T. C.
,
Huang
,
S. H.
, and
Zhang
,
H. C.
,
2001
, “
Design for Manufacture and Design for ‘X’: Concepts, Applications, and Perspectives
,”
Comput. Ind. Eng.
,
41
(
3
), pp.
241
260
.
24.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing—Identifying the Future of Freeform Processing
,” Technical Report, The University of Texas at Austin, Austin, TX.
25.
Fey
,
N. P.
,
South
,
B. J.
,
Seepersad
,
C. C.
, and
Neptune
,
R. R.
,
2009
, “
Topology Optimization and Freeform Fabrication Framework for Developing Prosthetic Feet
,”
Solid Freeform Fabrication Symposium
, pp.
607
619
.
26.
Gardan
,
N.
, and
Schneider
,
A.
, “
Topological Optimization of Internal Patterns and Support in Additive Manufacturing
,”
J. Manuf. Syst.
, (in press).
27.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
5
(
5
), pp.
686
696
.
28.
Emmelmann
,
C.
,
Sander
,
P.
,
Kranz
,
J.
, and
Wycisk
,
E.
,
2011
, “
Laser Additive Manufacturing and Bionics: Redefining Lightweight Design
,”
Phys. Procedia
,
12
(
Pt. A
), pp.
364
368
.
29.
Gerber
,
G. F.
, and
Barnard
,
L. J.
,
2008
, “
Designing for Laser Sintering
,”
J. New Gener. Sci.
,
6
, pp.
47
59
.
30.
Bin Maidin
,
S.
,
Campbell
,
I.
, and
Pei
,
E.
,
2012
, “
Development of a Design Feature Database to Support Design for Additive Manufacturing
,”
Assem. Autom.
,
32
(
3
), pp.
235
244
.
31.
Lokesh
,
K.
, and
Jain
,
P. K.
,
2010
, “
Selection of Rapid Prototyping Technology
,”
Adv. Prod. Eng. Manage.
,
5
(
2
), pp.
74
134
.
32.
Byun
,
H.
, and
Lee
,
K.
,
2005
, “
A Decision Support System for the Selection of a Rapid Prototyping Process Using the Modified TOPSIS Method
,”
Int. J. Adv. Manuf. Technol.
,
26
(
11
), pp.
1338
1347
.
33.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput. Aided Des.
,
30
(
5
), pp.
343
356
.
34.
Ruffo
,
M.
, and
Hague
,
R.
,
2007
, “
Cost Estimation for Rapid Manufacturing—Simultaneous Production of Mixed Components Using Laser Sintering
,”
J. Eng. Manuf.
,
221
(
11
), pp.
1585
1591
.
35.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Adv. Manuf. Technol.
,
62
(
9
), pp.
1147
1155
.
36.
Childs
,
T. H. C.
, and
Juster
,
N. P.
,
1994
, “
Linear and Geometric Accuracies From Layer Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
43
(
1
), pp.
163
166
.
37.
Hopkinson
,
N.
, and
Dickens
,
P. M.
,
2001
, “
Rapid Prototyping for Direct Manufacture
,”
Rapid Prototyping J.
,
7
(
4
), pp.
197
202
.
38.
Yim
,
S.
, and
Rosen
,
D.
,
2012
, “
Build Time and Cost Models for Additive Manufacturing Process Selection
,”
ASME
Paper No. DETC2012-70940.
39.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2005
, “
Towards the Design of a Layer-Based Additive Manufacturing Process for the Realization of Metal Parts of Designed Mesostructure
,”
Solid Freeform Fabrication Symposium
, pp.
217
230
.
40.
Doubrovski
,
Z.
,
Verlinden
,
J. C.
, and
Geraedts
,
J. M.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
ASME
Paper No. DETC2011-48131.
41.
Reinhart
,
G.
, and
Teufelhart
,
S.
,
2011
, “
Load-Adapted Design of Generative Manufactured Lattice Structures
,”
Phys. Procedia
,
12
(
Pt. A
), pp.
385
392
.
42.
Muller
,
P.
,
Mognol
,
P.
, and
Hascoet
,
J.
,
2013
, “
Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
685
692
.
43.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
44.
Kilburn
,
P.
,
2012
,
Overview of Additive Manufacturing and Materials
,
CERN
,
Zurich, Switzerland
, p.
76
.
45.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.
46.
Ahn
,
D.
,
Kim
,
H.
, and
Lee
,
S.
,
2007
, “
Fabrication Direction Optimization to Minimize Post-Machining in Layered Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
593
606
.
47.
Boyard
,
N.
,
Rivette
,
M.
,
Christmann
,
O.
, and
Richir
,
S.
,
2013
, “
A Design Methodology for Parts Using Additive Manufacturing
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria
,
Portugal
, Oct. 1–5, pp.
399
404
.
48.
Vitse
,
M.
,
Laverne
,
F.
,
Segonds
,
F.
,
Ratgras
,
S.
,
L.
Pellat Finet
, and
Yantio
,
G.
,
2014
, “
Fabrication Additive: Integration du DFAM Pour la Conception Petites et Moyennes Séries Dans le Domaine Aerospatial
,”
CONFERE'14
,
Sibenik
,
Croatia
, p.
8
.
49.
Rodrigue
,
H.
, and
Rivette
,
M.
,
2010
, “
An Assembly-Level Design for Additive Manufacturing Methodology
,”
IDMME—Virtual Concept 2010
,
Bordeaux
,
France
, p.
9
.
50.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Rob. Comput. Integr. Manuf.
,
30
(
4
), pp.
389
398
.
51.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J. P.
,
2007
, “
A 3D Dynamic Numerical Approach for Temperature and Thermal Stress Distributions in Multilayer Laser Solid Freeform Fabrication Process
,”
Opt. Lasers Eng.
,
45
(
12
), pp.
1115
1130
.
52.
Chan
,
C. K.
, and
Tan
,
S. T.
,
2005
, “
Volume Decomposition of CAD Models for Rapid Prototyping Technology
,”
Rapid Prototyping J.
,
11
(
4
), pp.
221
234
.
53.
Choi
,
J.
, and
Chang
,
Y.
,
2005
, “
Characteristics of Laser Aided Direct Metal/Material Deposition Process for Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
597
607
.
54.
Rafi
,
H. K.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti–6Al–4V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5
), pp.
1299
1309
.
55.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
24th Solid Freeform Fabrication Symposium
, pp.
6
8
.
56.
Maheshwaraa
,
U.
,
Seepersad
,
C.
, and
Bourell
,
D. L.
,
2007
, “
Design and Freeform Fabrication of Deployable Structures With Lattice Skins
,”
Rapid Prototyping J.
,
13
(
4
), pp.
213
225
.
57.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Conception Pour la Fabrication Additive: Un état de l'art
,”
AIP PRIMECA'15
,
La Plagne
,
France
, p.
7
.
58.
Anwer
,
N.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2013
, “
The Skin Model, a Comprehensive Geometric Model for Engineering Design
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
143
146
.
59.
ISO
,
2009
,
Systèmes de Management de la Qualité: Principes Essentiels et Vocabulaire
,
AFNOR
,
Paris
.
60.
Savransky
,
S. D.
,
2000
,
Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving
,
CRC Press
,
New York
.
61.
Henderson
,
R. M.
, and
Clark
,
K. B.
,
1990
, “
Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms
,”
Adm. Sci. Q.
,
35
(
1
), pp.
9
30
.
62.
Skander
,
A.
,
Roucoules
,
L
, and
Klein Meyer
,
J. S.
,
2008
, “
Design and Manufacturing Interface Modelling for Manufacturing Processes Selection and Knowledge Synthesis in Design
,”
Int. J. Adv. Manuf. Technol.
,
37
(
5
), pp.
443
454
.
63.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2003
,
Product Design—Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
64.
Ponche
,
R.
,
2013
, “
Methodologie de Conception Pour la Fabrication Additive, Application à la Projection de Poudres
,” Thèse de doctorat, IRCCyN, UMR CNRS 6597, École Centrale de Nantes, Nantes, France.
65.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
66.
Kalyanasundaram
,
V.
, and
Lewis
,
K.
,
2014
, “
A Function Based Approach for Product Integration
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041002
.
67.
Howard
,
T. J.
,
Culley
,
S. J.
, and
Dekoninck
,
E.
,
2008
, “
Describing the Creative Design Process by the Integration of Engineering Design and Cognitive Psychology Literature
,”
Des. Stud.
,
29
(
2
), pp.
160
180
.
68.
Shah
,
J. J.
,
Kulkarni
,
S. V.
, and
Vargas-Hernandez
,
N.
,
2000
, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
377
384
.
69.
Cross
,
N.
,
2008
,
Engineering Design Methods: Strategies for Product Design
,
Wiley
,
Chichester, UK
.
70.
Broberg
,
O.
,
1997
, “
Integrating Ergonomics Into the Product Development Process
,”
Int. J. Ind. Ergonom.
,
19
(
4
), pp.
317
327
.
71.
Curral
,
L. A.
,
Forrester
,
R. H.
,
Dawson
,
J. F.
, and
West
,
M. A.
,
2001
, “
It's What You Do and the Way That You Do It: Team Task, Team Size, and Innovation-Related Group Processes
,”
Eur. J. Work Organ. Psychol.
,
10
(
2
), pp.
187
204
.
72.
Moreland
,
R. L.
,
Levine
,
J. M.
, and
Wingert
,
M. L.
,
1996
, “
Creating the Ideal Group: Composition Effects at Work
,”
Understanding Group Behavior
, Vol. 2,
E.
Witte
and
J. H.
Davis
, eds., pp.
11
35
.
73.
Linsey
,
J. S.
,
Green
,
M. G.
,
Murphy
,
J.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2005
, “
‘Collaborating to Success': An Experimental Study of Group Idea Generation Techniques
,”
ASME
Paper No. DETC2005-85351.
74.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
75.
Bonnardel
,
N.
, and
Bouchard
,
C.
,
2014
, “
Design, Ergonomics and User Interfaces: Complementary and Interdisciplinary Studies to Enhance Creative Activities
,”
Ergonomie et Informatique Avancée Conference
,
Bidart-Biarritz
,
France
, ACM, New York, pp.
2
10
.
76.
Mougenot
,
C.
,
Watanabe
,
K.
,
Bouchard
,
C.
, and
Aoussat
,
A.
,
2009
, “
Visual Materials and Designers' Cognitive Activity: Towards In-Depth Investigations of Design Cognition
,” International Association of Societies of Design Research, Seoul, South Korea.
77.
Schon
,
D.
,
1992
, “
Designing as Reflective Conversation With the Materials of a Design Situation
,”
Res. Eng. Des.
,
3
(
3
), pp.
131
147
.
78.
Mann
,
D.
, and
Dewulf
,
S.
,
2001
, “
Evolving the World's Systematic Creativity Methods
,”
7th European Association for Creativity and Innovation Conference
, p.
9
.
You do not currently have access to this content.