The field of rehabilitation robotics has emerged to address the growing desire to improve therapy modalities after neurological disorders, such as a stroke. For rehabilitation robots to be successful as clinical devices, a number of mechanical design challenges must be addressed, including ergonomic interactions, weight and size minimization, and cost–time optimization. We present additive manufacturing (AM) as a compelling solution to these challenges by demonstrating how the integration of AM into the development process of a hand exoskeleton leads to critical design improvements and substantially reduces prototyping cost and time.

References

References
1.
Brault
,
M. W.
,
2012
,
Americans With Disabilities: 2010
, U.S. Department of Commerce, Economics and Statistics Administration,
U.S. Census Bureau
, Washington, DC, http://www.census.gov/prod/2012pubs/p70-131.pdf
2.
Ruiz
,
A.
,
Forner-Cordero
,
A.
,
Rocon
,
E.
, and
Pons
,
J.
,
2006
, “
Exoskeletons for Rehabilitation and Motor Control
,”
The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Pisa, Italy, Feb. 20–22, pp.
601
606
.
3.
Takahashi
,
C. D.
,
Der-Yeghiaian
,
L.
,
Le
,
V.
,
Motiwala
,
R. R.
, and
Cramer
,
S. C.
,
2008
, “
Robot-Based Hand Motor Therapy After Stroke
,”
Brain
,
131
(
2
), pp.
425
437
.
4.
Weiss
,
P.
,
Heyer
,
L.
,
Munte
,
T.
,
Heldmann
,
M.
,
Schweikard
,
A.
, and
Maehle
,
E.
,
2013
, “
Towards a Parameterizable Exoskeleton for Training of Hand Function After Stroke
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26, pp.
1
6
.
5.
Riener
,
R.
,
Nef
,
T.
, and
Colombo
,
G.
,
2005
, “
Robot-Aided Neurorehabilitation of the Upper Extremities
,”
Med. Biol. Eng. Comput.
,
43
(
1
), pp.
2
10
.
6.
Nef
,
T.
,
Mihelj
,
M.
, and
Riener
,
R.
,
2007
, “
Armin: A Robot for Patient-Cooperative Arm Therapy
,”
Med. Biol. Eng. Comput.
,
45
(
9
), pp.
887
900
.
7.
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2003
, “
Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training
,”
Auton. Rob.
,
15
(
1
), pp.
21
33
.
8.
Chiri
,
A.
,
Cempini
,
M.
,
De Rossi
,
S.
,
Lenzi
,
T.
,
Giovacchini
,
F.
,
Vitiello
,
N.
, and
Carrozza
,
M.
,
2012
, “
On the Design of Ergonomic Wearable Robotic Devices for Motion Assistance and Rehabilitation
,”
IEEE Annual International Conference of Engineering in Medicine and Biology Society
(
EMBC
), San Diego, CA, Aug. 28–Sep. 1, pp.
6124
6127
.
9.
Dollar
,
A.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
10.
Pons
,
J.
,
2008
,
Wearable Robots: Biomechatronic Exoskeletons
,
Wiley
, Hoboken, NJ.
11.
Schiele
,
A.
, and
van der Helm
,
F. C.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.
12.
Krebs
,
H.
,
Volpe
,
B.
,
Aisen
,
M.
, and
Hogan
,
N.
,
2000
, “
Increasing Productivity and Quality of Care: Robot-Aided Neuro-Rehabilitation
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
639
652
.
13.
Agarwal
,
P.
,
Fox
,
J.
,
Yun
,
Y.
,
O'Malley
,
M. K.
, and
Deshpande
,
A. D.
,
2015
, “
An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization
,”
Int. J. Rob. Res.
(in press).
14.
Schiele
,
A.
, and
van der Helm
,
F. C.
,
2009
, “
Influence of Attachment Pressure and Kinematic Configuration on pHRI With Wearable Robots
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
157
173
.
15.
IEA
, “
International Ergonomics Association: What Is Ergonomics
,” http://www.iea.cc/whats/index.html
16.
Colombo
,
G.
,
Joerg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
,
2000
, “
Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
693
700
.
17.
Hidler
,
J. M.
, and
Wall
,
A. E.
,
2005
, “
Alterations in Muscle Activation Patterns During Robotic-Assisted Walking
,”
Clin. Biomech.
,
20
(
2
), pp.
184
193
.
18.
Garneau
,
C. J.
, and
Parkinson
,
M. B.
,
2011
, “
A Comparison of Methodologies for Designing for Human Variability
,”
J. Eng. Des.
,
22
(
7
), pp.
505
521
.
19.
Kruth
,
J. P.
,
1991
, “
Material Increases Manufacturing by Rapid Prototyping Techniques
,”
CIRP Ann.–Manuf. Technol.
,
40
(
2
), pp.
603
614
.
20.
Pham
,
D. T.
, and
Gault
,
R. S.
,
1998
, “
A Comparison of Rapid Prototyping Technologies
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1257
1287
.
21.
Iqbal
,
J.
,
2012
,
Hand Exoskeleton Robotic Systems Role and Deriving the Design Requirements
,
LAP LAMBERT Academic Publishing
,
Saarbrücken
, Germany.
22.
Iqbal
,
J.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2011
, “
Design of a Wearable Direct-Driven Optimized Hand Exoskeleton Device
,”
The Fourth International Conference on Advances in Computer-Human Interactions (ACHI)
, Gosier, Guadeloupe, France, Feb. 23–28, pp.
142
146
.
23.
Fernandez
,
M. G.
,
2005
, “
Decision Support in Concurrent Engineering—The Utility-Based Selection Decision Support Problem
,”
Concurrent Eng.
,
13
(
1
), pp.
13
27
.
24.
Mistree
,
F.
,
Lewis
,
K.
, and
Stonis
,
L.
,
1994
, “
Selection in the Conceptual Design of Aircraft
,”
AIAA
Paper No. 94-4382-CP.
25.
Manfredi
,
D.
,
Ambrosio
,
E.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Biamino
,
S.
,
Pavese
,
M.
,
Atzeni
,
E.
,
Iuliano
,
L.
,
Fino
,
P.
, and
Badini
,
C.
,
2014
, “
Direct Metal Laser Sintering: An Additive Manufacturing Technology Ready to Produce Lightweight Structural Parts for Robotic Applications
,”
Metall. Ital.
,
10
, pp.
15
24
.
26.
Hopkinson
,
N.
,
Hague
,
R.
, and
Dickens
,
P.
,
2006
,
Rapid Manufacturing: An Industrial Revolution for the Digital Age
,
Wiley
, Hoboken, NJ.
27.
Schmid
,
M.
,
Simon
,
C.
, and
Levy
,
G.
,
2009
, “
Finishing of SLS-Parts for Rapid Manufacturing (RM)—A Comprehensive Approach
,”
Solid Freeform Fabrication (SFF) Proceedings
, pp.
1
10
.
You do not currently have access to this content.