The field of rehabilitation robotics has emerged to address the growing desire to improve therapy modalities after neurological disorders, such as a stroke. For rehabilitation robots to be successful as clinical devices, a number of mechanical design challenges must be addressed, including ergonomic interactions, weight and size minimization, and cost–time optimization. We present additive manufacturing (AM) as a compelling solution to these challenges by demonstrating how the integration of AM into the development process of a hand exoskeleton leads to critical design improvements and substantially reduces prototyping cost and time.
Issue Section:
Novel Applications of Design for AM
References
References
1.
Brault
, M. W.
, 2012
, Americans With Disabilities: 2010
, U.S. Department of Commerce, Economics and Statistics Administration, U.S. Census Bureau
, Washington, DC, http://www.census.gov/prod/2012pubs/p70-131.pdf2.
Ruiz
, A.
, Forner-Cordero
, A.
, Rocon
, E.
, and Pons
, J.
, 2006
, “Exoskeletons for Rehabilitation and Motor Control
,” The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob
), Pisa, Italy, Feb. 20–22, pp. 601
–606
.3.
Takahashi
, C. D.
, Der-Yeghiaian
, L.
, Le
, V.
, Motiwala
, R. R.
, and Cramer
, S. C.
, 2008
, “Robot-Based Hand Motor Therapy After Stroke
,” Brain
, 131
(2
), pp. 425
–437
.4.
Weiss
, P.
, Heyer
, L.
, Munte
, T.
, Heldmann
, M.
, Schweikard
, A.
, and Maehle
, E.
, 2013
, “Towards a Parameterizable Exoskeleton for Training of Hand Function After Stroke
,” IEEE International Conference on Rehabilitation Robotics
(ICORR
), Seattle, WA, June 24–26, pp. 1
–6
.5.
Riener
, R.
, Nef
, T.
, and Colombo
, G.
, 2005
, “Robot-Aided Neurorehabilitation of the Upper Extremities
,” Med. Biol. Eng. Comput.
, 43
(1
), pp. 2
–10
.6.
Nef
, T.
, Mihelj
, M.
, and Riener
, R.
, 2007
, “Armin: A Robot for Patient-Cooperative Arm Therapy
,” Med. Biol. Eng. Comput.
, 45
(9
), pp. 887
–900
.7.
Tsagarakis
, N. G.
, and Caldwell
, D. G.
, 2003
, “Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training
,” Auton. Rob.
, 15
(1
), pp. 21
–33
.8.
Chiri
, A.
, Cempini
, M.
, De Rossi
, S.
, Lenzi
, T.
, Giovacchini
, F.
, Vitiello
, N.
, and Carrozza
, M.
, 2012
, “On the Design of Ergonomic Wearable Robotic Devices for Motion Assistance and Rehabilitation
,” IEEE Annual International Conference of Engineering in Medicine and Biology Society
(EMBC
), San Diego, CA, Aug. 28–Sep. 1, pp. 6124
–6127
.9.
Dollar
, A.
, and Herr
, H.
, 2008
, “Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,” IEEE Trans. Rob.
, 24
(1
), pp. 144
–158
.10.
Pons
, J.
, 2008
, Wearable Robots: Biomechatronic Exoskeletons
, Wiley
, Hoboken, NJ.11.
Schiele
, A.
, and van der Helm
, F. C.
, 2006
, “Kinematic Design to Improve Ergonomics in Human Machine Interaction
,” IEEE Trans. Neural Syst. Rehabil. Eng.
, 14
(4
), pp. 456
–469
.12.
Krebs
, H.
, Volpe
, B.
, Aisen
, M.
, and Hogan
, N.
, 2000
, “Increasing Productivity and Quality of Care: Robot-Aided Neuro-Rehabilitation
,” J. Rehabil. Res. Dev.
, 37
(6
), pp. 639
–652
.13.
Agarwal
, P.
, Fox
, J.
, Yun
, Y.
, O'Malley
, M. K.
, and Deshpande
, A. D.
, 2015
, “An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization
,” Int. J. Rob. Res.
(in press).14.
Schiele
, A.
, and van der Helm
, F. C.
, 2009
, “Influence of Attachment Pressure and Kinematic Configuration on pHRI With Wearable Robots
,” Appl. Bionics Biomech.
, 6
(2
), pp. 157
–173
.15.
16.
Colombo
, G.
, Joerg
, M.
, Schreier
, R.
, and Dietz
, V.
, 2000
, “Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,” J. Rehabil. Res. Dev.
, 37
(6
), pp. 693
–700
.17.
Hidler
, J. M.
, and Wall
, A. E.
, 2005
, “Alterations in Muscle Activation Patterns During Robotic-Assisted Walking
,” Clin. Biomech.
, 20
(2
), pp. 184
–193
.18.
Garneau
, C. J.
, and Parkinson
, M. B.
, 2011
, “A Comparison of Methodologies for Designing for Human Variability
,” J. Eng. Des.
, 22
(7
), pp. 505
–521
.19.
Kruth
, J. P.
, 1991
, “Material Increases Manufacturing by Rapid Prototyping Techniques
,” CIRP Ann.–Manuf. Technol.
, 40
(2
), pp. 603
–614
.20.
Pham
, D. T.
, and Gault
, R. S.
, 1998
, “A Comparison of Rapid Prototyping Technologies
,” Int. J. Mach. Tools Manuf.
, 38
(10–11
), pp. 1257
–1287
.21.
Iqbal
, J.
, 2012
, Hand Exoskeleton Robotic Systems Role and Deriving the Design Requirements
, LAP LAMBERT Academic Publishing
, Saarbrücken
, Germany.22.
Iqbal
, J.
, Tsagarakis
, N.
, and Caldwell
, D.
, 2011
, “Design of a Wearable Direct-Driven Optimized Hand Exoskeleton Device
,” The Fourth International Conference on Advances in Computer-Human Interactions (ACHI)
, Gosier, Guadeloupe, France, Feb. 23–28, pp. 142
–146
.23.
Fernandez
, M. G.
, 2005
, “Decision Support in Concurrent Engineering—The Utility-Based Selection Decision Support Problem
,” Concurrent Eng.
, 13
(1
), pp. 13
–27
.24.
Mistree
, F.
, Lewis
, K.
, and Stonis
, L.
, 1994
, “Selection in the Conceptual Design of Aircraft
,” AIAA
Paper No. 94-4382-CP.25.
Manfredi
, D.
, Ambrosio
, E.
, Calignano
, F.
, Krishnan
, M.
, Canali
, R.
, Biamino
, S.
, Pavese
, M.
, Atzeni
, E.
, Iuliano
, L.
, Fino
, P.
, and Badini
, C.
, 2014
, “Direct Metal Laser Sintering: An Additive Manufacturing Technology Ready to Produce Lightweight Structural Parts for Robotic Applications
,” Metall. Ital.
, 10
, pp. 15
–24
.26.
Hopkinson
, N.
, Hague
, R.
, and Dickens
, P.
, 2006
, Rapid Manufacturing: An Industrial Revolution for the Digital Age
, Wiley
, Hoboken, NJ.27.
Schmid
, M.
, Simon
, C.
, and Levy
, G.
, 2009
, “Finishing of SLS-Parts for Rapid Manufacturing (RM)—A Comprehensive Approach
,” Solid Freeform Fabrication (SFF) Proceedings
, pp. 1
–10
.
You do not currently have access to this content.