Additive manufacturing (AM), or 3D-printing, sits at the heart of the Maker Movement—the growing desire for wider-ranges of people to design physical objects. However, most users that wish to design functional moving devices face a prohibitive barrier-to-entry: they need fluency in a computer-aided design (CAD) package. This limits most people to being merely consumers, rather than designers or makers. To solve this problem, we combine advances in mechanism synthesis, computer languages, and design for AM to create a computational framework, the MechProcessor, which allows novices to produce 3D-printable, moving mechanisms of varying complexity using simple and extendable interfaces. The paper describes how we use hierarchical cascading configuration languages, breadth-first search, and mixed-integer linear programming (MILP) for mechanism synthesis, along with a nested, printable test-case to detect and resolve the AM constraints needed to ensure the devices can be 3D printed. We provide physical case studies and an open-source library of code and mechanisms that enable others to easily extend the MechProcessor framework. This encourages new research, commercial, and educational directions, including new types of customized printable robotics, business models for customer-driven design, and STEM education initiatives that involve nontechnical audiences in mechanical design. By promoting novice interaction in complex design and fabrication of movable components, we can move society closer to the true promise of the Maker Movement: turning consumers into designers.

References

References
1.
Dougherty
,
D.
,
2012
, “
The Maker Movement
,”
Innovations: Technol., Governance, Globalization
,
7
(
3
), pp.
11
14
.
2.
Tsai
,
L.-W.
,
2010
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
3.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
, Vol.
11
,
Springer Science and Business Media
,
New York
.
4.
Mruthyunjaya
,
T.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
5.
Moon
,
Y.-M.
, and
Kota
,
S.
,
2002
, “
Automated Synthesis of Mechanisms Using Dual-Vector Algebra
,”
Mech. Mach. Theory
,
37
(
2
), pp.
143
166
.
6.
Kota
,
S.
, and
Chiou
,
S.-J.
,
1992
, “
Conceptual Design of Mechanisms Based on Computational Synthesis and Simulation of Kinematic Building Blocks
,”
Res. Eng. Des.
,
4
(
2
), pp.
75
87
.
7.
Chiou
,
S.-J.
, and
Sridhar
,
K.
,
1999
, “
Automated Conceptual Design of Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
467
495
.
8.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Structural Synthesis of Planar Kinematic Chains by Adapting a McKay-Type Algorithm
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1021
1030
.
9.
Hoeltzel
,
D. A.
, and
Chieng
,
W.-H.
,
1990
, “
Knowledge-Based Approaches for the Creative Synthesis of Mechanisms
,”
Comput.-Aided Des.
,
22
(
1
), pp.
57
67
.
10.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
1994
, “
An Approach to Functional Synthesis of Solutions in Mechanical Conceptual Design. Part I: Introduction and Knowledge Representation
,”
Res. Eng. Des.
,
6
(
3
), pp.
127
141
.
11.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
1996
, “
An Approach to Functional Synthesis of Mechanical Design Concepts: Theory, Applications, and Emerging Research Issues
,”
Artif. Intell. Eng., Des., Anal. Manuf.
,
10
(
4
), pp.
313
331
.
12.
Li
,
C.
,
Tan
,
S.
, and
Chan
,
K.
,
1996
, “
A Qualitative and Heuristic Approach to the Conceptual Design of Mechanisms
,”
Eng. Appl. Artif. Intell.
,
9
(
1
), pp.
17
32
.
13.
Wang
,
Y.-X.
, and
Yan
,
H.-S.
,
2002
, “
Computerized Rules-Based Regeneration Method for Conceptual Design of Mechanisms
,”
Mech. Mach. Theory
,
37
(
9
), pp.
833
849
.
14.
Radhakrishnan
,
P.
, and
Campbell
,
M. I.
,
2012
, “
An Automated Kinematic Analysis Tool for Computationally Synthesizing Planar Mechanisms
,”
ASME
Paper No. DETC2012-70737.
15.
Han
,
Y.-H.
, and
Lee
,
K.
,
2006
, “
A Case-Based Framework for Reuse of Previous Design Concepts in Conceptual Synthesis of Mechanisms
,”
Comput. Ind.
,
57
(
4
), pp.
305
318
.
16.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072303
.
17.
Lipson
,
H.
, and
Pollack
,
J. B.
,
2000
, “
Automatic Design and Manufacture of Robotic Lifeforms
,”
Nature
,
406
(
6799
), pp.
974
978
.
18.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
19.
Helms
,
B.
,
Shea
,
K.
, and
Hoisl
,
F.
,
2009
, “
A Framework for Computational Design Synthesis Based on Graph-Grammars and Function-Behavior-Structure
,”
ASME
Paper No. DETC2009-86851.
20.
Radhakrishnan
,
P.
, and
Campbell
,
M. I.
,
2011
, “
A Graph Grammar Based Scheme for Generating and Evaluating Planar Mechanisms
,”
Design Computing and Cognition’10
,
Springer
,
Dordrecht
, pp.
663
679
.
21.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
,
2000
, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
371
376
.
22.
Münzer
,
C.
,
Helms
,
B.
, and
Shea
,
K.
,
2013
, “
Automatically Transforming Object-Oriented Graph-Based Representations Into Boolean Satisfiability Problems for Computational Design Synthesis
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101001
.
23.
Mavroidis
,
C.
,
DeLaurentis
,
K. J.
,
Won
,
J.
, and
Alam
,
M.
,
2001
, “
Fabrication of Non-Assembly Mechanisms and Robotic Systems Using Rapid Prototyping
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
516
524
.
24.
Lipson
,
H.
,
Moon
,
F. C.
,
Hai
,
J.
, and
Paventi
,
C.
,
2005
, “
3-D Printing the History of Mechanisms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1029
1033
.
25.
Mehta
,
A. M.
,
DelPreto
,
J.
,
Shaya
,
B.
, and
Rus
,
D.
,
2014
, “
Cogeneration of Mechanical, Electrical, and Software Designs for Printable Robots From Structural Specifications
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, IL, Sept. 14–18, pp.
2892
2897
.
26.
Mehta
,
A.
,
DelPreto
,
J.
, and
Rus
,
D.
,
2015
, “
Integrated Codesign of Printable Robots
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021015
.
27.
Coros
,
S.
,
Thomaszewski
,
B.
,
Noris
,
G.
,
Sueda
,
S.
,
Forberg
,
M.
,
Sumner
,
R. W.
,
Matusik
,
W.
, and
Bickel
,
B.
,
2013
, “
Computational Design of Mechanical Characters
,”
ACM Trans. Graphics (TOG)
,
32
(
4
), p.
83
.
28.
Thomaszewski
,
B.
,
Coros
,
S.
,
Gauge
,
D.
,
Megaro
,
V.
,
Grinspun
,
E.
, and
Gross
,
M.
,
2014
, “
Computational Design of Linkage-Based Characters
,”
ACM Trans. Graphics (TOG)
,
33
(
4
), p.
64
.
29.
Mota
,
C.
,
2011
, “
The Rise of Personal Fabrication
,”
8th ACM Conference on Creativity and Cognition
(
C&C '11
), Atlanta, GA, Nov. 3–6.
30.
Fuge
,
M.
,
Yumer
,
M. E.
,
Orbay
,
G.
, and
Kara
,
L. B.
,
2012
, “
Conceptual Design and Modification of Freeform Surfaces Using Dual Shape Representations in Augmented Reality Environments
,”
Comput.-Aided Des.
,
44
(
10
), pp.
1020
1032
.
31.
Kara
,
L. B.
,
D'Eramo
,
C. M.
, and
Shimada
,
K.
,
2006
, “
Pen-Based Styling Design of 3D Geometry Using Concept Sketches and Template Models
,”
ACM Symposium on Solid and Physical Modeling
(
SPM’06
), Wales, UK, June 6–8, ACM, New York, pp.
149
160
.
32.
Murugappan
,
S.
,
Piya
,
C.
,
Ramani
,
K.
, and
Vinayak
,
2012
, “
Handy-Potter: Rapid 3D Shape Exploration Through Natural Hand Motions
,”
ASME
Paper No. DETC2012-71427.
33.
Design Engineering Lab
, “
Design Repository
,” Oregon State University, Corvallis, OR, accessed Apr. 9,
2015
, http://design.engr.oregonstate.edu/repo
34.
de Weck
,
O. L.
,
2012
, “
Feasibility of a 5x Speedup in System Development Due to META Design
,”
ASME
Paper No. DETC2012-70791.
35.
Ceylan
,
D.
,
Li
,
W.
,
Mitra
,
N. J.
,
Agrawala
,
M.
, and
Pauly
,
M.
,
2013
, “
Designing and Fabricating Mechanical Automata From Mocap Sequences
,”
ACM Trans. Graphics (TOG)
,
32
(
6
), p.
186
.
36.
Megaro
,
V.
,
Thomaszewski
,
B.
,
Gauge
,
D.
,
Grinspun
,
E.
,
Coros
,
S.
, and
Gross
,
M.
,
2014
, “
ChaCra: An Interactive Design System for Rapid Character Crafting
,”
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(
SCA
), Copenhagen, July 21–23http://www.disneyresearch.com/project/chacra/.
37.
Schulz
,
A.
,
Shamir
,
A.
,
Levin
,
D. I.
,
Sitthi-Amorn
,
P.
, and
Matusik
,
W.
,
2014
, “
Design and Fabrication by Example
,”
ACM Trans. Graphics (TOG)
,
33
(
4
), p.
62
.
38.
Lau
,
M.
,
Ohgawara
,
A.
,
Mitani
,
J.
, and
Igarashi
,
T.
,
2011
, “
Converting 3D Furniture Models to Fabricatable Parts and Connectors
,”
ACM Trans. Graphics (TOG)
,
30
(
4
), p.
85
.
39.
Kalogerakis
,
E.
,
Chaudhuri
,
S.
,
Koller
,
D.
, and
Koltun
,
V.
,
2012
, “
A Probabilistic Model for Component-Based Shape Synthesis
,”
ACM Trans. Graphics (TOG)
,
31
(
4
), p.
55
.
40.
Ma
,
R. R.
,
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2015
, “
Hybrid Deposition Manufacturing: Design Strategies for Multimaterial Mechanisms Via Three-Dimensional Printing and Material Deposition
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021002
.
41.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graphics (TOG)
,
32
(
4
), p.
82
.
42.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics (TOG)
,
31
(
6
), p.
130
.
43.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
, and
Měch
,
R.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graphics (TOG)
,
31
(
4
), p.
48
.
44.
Bochmann
,
L.
,
Bayley
,
C.
,
Helu
,
M.
,
Transchel
,
R.
,
Wegener
,
K.
, and
Dornfeld
,
D.
,
2015
, “
Understanding Error Generation in Fused Deposition Modeling
,”
Surf. Topogr.: Metrol. Prop.
,
3
(
1
), p.
014002
.
45.
Clemon
,
L.
,
Sudradjat
,
A.
,
Jaquez
,
M.
,
Krishna
,
A.
,
Rammah
,
M.
, and
Dornfeld
,
D.
,
2013
, “
Precision and Energy Usage for Additive Manufacturing
,”
ASME
Paper No. IMECE2013-65688.
46.
Hildebrand
,
K.
,
Bickel
,
B.
, and
Alexa
,
M.
,
2013
, “
Orthogonal Slicing for Additive Manufacturing
,”
Comput. Graphics
,
37
(
6
), pp.
669
675
.
47.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
.
48.
Rajagopalan
,
S.
, and
Cutkosky
,
M.
,
2003
, “
Error Analysis for the In-Situ Fabrication of Mechanisms
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
809
822
.
49.
Liang
,
V.-C.
, and
Paredis
,
C. J.
,
2004
, “
A Port Ontology for Conceptual Design of Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
206
217
.
50.
Ben-Kiki
,
O.
,
Evans
,
C.
, and
Ingerson
,
B.
,
2005
, “
YAML Ain't Markup Language (YAML) Version 1.1
,” http://www.yaml.org/spec/1.2/spec.html
51.
van der Meiden
,
H. A.
, and
Bronsvoort
,
W. F.
,
2010
, “
A Non-Rigid Cluster Rewriting Approach to Solve Systems of 3D Geometric Constraints
,”
Comput.-Aided Des.
,
42
(
1
), pp.
36
49
.
52.
Milgram
,
R. J.
, and
Trinkle
,
J. C.
,
2004
, “
The Geometry of Configuration Spaces for Closed Chains in Two and Three Dimensions
,”
Homol., Homotopy Appl.
,
6
(
1
), pp.
237
267
.
53.
Mitchell
,
S.
,
OSullivan
,
M.
, and
Dunning
,
I.
,
2011
, “
PuLP: A Linear Programming Toolkit for Python
,” The University of Auckland, Auckland, New Zealand, http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
54.
Eicholtz
,
M.
, and
Kara
,
L. B.
,
2015
, “
Intermodal Image-Based Recognition of Planar Kinematic Mechanisms
,”
J. Visual Lang. Comput.
,
27
, pp.
38
48
.
You do not currently have access to this content.