A self-folding structure fabricated by additive manufacturing (AM) can be automatically folded into a demanding three-dimensional (3D) shape by actuation mechanisms such as heating. However, 3D surfaces can only be fabricated by self-folding structures when they are flattenable. Most generally, designed parts are not flattenable. To address the problem, we develop a shape optimization method to modify a nonflattenable surface into flattenable. The shape optimization framework is equipped with topological operators for adding interior/boundary cuts to further improve the flattenability. When inserting cuts, self-intersection is locally prevented on the flattened two-dimensional (2D) pieces. The total length of inserted cuts is also minimized to reduce artifacts on the finally folded 3D shape.

References

References
1.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
,
Boca Raton, FL
.
2.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
.
3.
An
,
B.
,
Miyashita
,
S.
,
Tolley
,
M. T.
,
Aukes
,
D. M.
,
Meeker
,
L.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
An End-To-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
1466
1473
.
4.
Deng
,
D.
, and
Chen
,
Y.
,
2015
, “
Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021701
.
5.
Park
,
J.-R.
,
Slanac
,
D. A.
,
Leong
,
T. G.
,
Ye
,
H.
,
Nelson
,
D. B.
, and
Gracias
,
D. H.
,
2008
, “
Reconfigurable Microfluidics With Metallic Containers
,”
J. Microelectromech. Syst.
,
17
(
2
), pp.
265
271
.
6.
Azam
,
A.
,
Laflin
,
K. E.
,
Jamal
,
M.
,
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2011
, “
Self-Folding Micropatterned Polymeric Containers
,”
Biomed. Microdevices
,
13
(
1
), pp.
51
58
.
7.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.
8.
Ionov
,
L.
,
2011
, “
Soft Microorigami: Self-Folding Polymer Films
,”
Soft Matter
,
7
(
15
), pp.
6786
6791
.
9.
Shim
,
T. S.
,
Kim
,
S.-H.
,
Heo
,
C.-J.
,
Jeon
,
H. C.
, and
Yang
,
S.-M.
,
2012
, “
Controlled Origami Folding of Hydrogel Bilayers With Sustained Reversibility for Robust Microcarriers
,”
Angew. Chem., Int. Ed.
,
51
(
6
), pp.
1420
1423
.
10.
Stoychev
,
G.
,
Turcaud
,
S.
,
Dunlop
,
J. W. C.
, and
Ionov
,
L.
,
2013
, “
Hierarchical Multi-Step Folding of Polymer Bilayers
,”
Adv. Funct. Mater.
,
23
(
18
), pp.
2295
2300
.
11.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.-M.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013-12405.
12.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
13.
Wang
,
M.-F.
,
Maleki
,
T.
, and
Ziaie
,
B.
,
2008
, “
Enhanced 3-D Folding of Silicon Microstructures Via Thermal Shrinkage of a Composite Organic/Inorganic Bilayer
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
882
889
.
14.
Ge
,
Q.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2013
, “
Active Materials by Four-Dimension Printing
,”
Appl. Phys. Lett.
,
103
(
13
), p.
131901
.
15.
Yasu
,
K.
, and
Inami
,
M.
,
2012
, “
POPAPY: Instant Paper Craft Made Up in a Microwave Oven
,”
Advances in Computer Entertainment
(Lecture Notes in Computer Science, Vol.
7624
),
A.
Nijholt
,
T.
Romo
, and
D.
Reidsma
, eds.,
Springer
,
Berlin, Germany
, pp.
406
420
.
16.
Smela
,
E.
,
2003
, “
Conjugated Polymer Actuators for Biomedical Applications
,”
Adv. Mater.
,
15
(
6
), pp.
481
494
.
17.
Ionov
,
L.
,
2012
, “
Biomimetic 3D Self-Assembling Biomicroconstructs by Spontaneous Deformation of Thin Polymer Films
,”
J. Mater. Chem.
,
22
(
37
), pp.
19366
19375
.
18.
Tibbits
,
S.
,
2014
, “
4D Printing: Multi-Material Shape Change
,”
Archit. Des.
,
84
(
1
), pp.
116
121
.
19.
Raviv
,
D.
,
Zhao
,
W.
,
McKnelly
,
C.
,
Papadopoulou
,
A.
,
Kadambi
,
A.
,
Shi
,
B.
,
Hirsch
,
S.
,
Dikovsky
,
D.
,
Zyracki
,
M.
,
Olguin
,
C.
,
Raskar
,
R.
, and
Tibbits
,
S.
,
2014
, “
Active Printed Materials for Complex Self-Evolving Deformations
,”
Sci. Rep.
,
4
, p.
7422
.
20.
Wang
,
C. C. L.
,
Smith
,
S.
, and
Yuen
,
M. M. F.
,
2002
, “
Surface Flattening Based on Energy Model
,”
Comput. Aided Des.
,
34
(
11
), pp.
823
833
.
21.
Sander
,
P. V.
,
Snyder
,
J.
,
Gortler
,
S. J.
, and
Hoppe
,
H.
,
2001
, “
Texture Mapping Progressive Meshes
,”
SIGGRAPH
: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques
, ACM, New York, pp.
409
416
.
22.
Kilian
,
M.
,
Flöry
,
S.
,
Chen
,
Z.
,
Mitra
,
N. J.
,
Sheffer
,
A.
, and
Pottmann
,
H.
,
2008
, “
Curved Folding
,”
ACM Trans. Graphics
,
27
(
3
), pp. 75:1–75:9.
23.
Sheffer
,
A.
,
2002
, “
Spanning Tree Seams for Reducing Parameterization Distortion of Triangulated Surfaces
,”
Shape Modeling International
, Banff, Alta., pp.
61
68
.
24.
Wang
,
C. C. L.
,
Wang
,
Y.
,
Tang
,
K.
, and
Yuen
,
M. M. F.
,
2004
, “
Reduce the Stretch in Surface Flattening by Finding Cutting Paths to the Surface Boundary
,”
Comput.-Aided Des.
,
36
(
8
), pp.
665
677
.
25.
Wang
,
C. C. L.
,
2008
, “
Towards Flattenable Mesh Surfaces
,”
Comput.-Aided Des.
,
40
(
1
), pp.
109
122
.
26.
Decaudin
,
P.
,
Julius
,
D.
,
Wither
,
J.
,
Boissieux
,
L.
,
Sheffer
,
A.
, and
Cani
,
M.-P.
,
2006
, “
Virtual Garments: A Fully Geometric Approach for Clothing Design
,”
Comput. Graphics Forum
,
25
(
3
), pp.
625
634
.
27.
Liu
,
Y.
,
Pottmann
,
H.
,
Wallner
,
J.
,
Yang
,
Y.-L.
, and
Wang
,
W.
,
2006
, “
Geometric Modeling With Conical Meshes and Developable Surfaces
,”
ACM Trans. Graphics
,
25
(
3
), pp.
681
689
.
28.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
29.
do Carmo
,
M. P.
,
1976
,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
, Upper Saddle River, NJ.
30.
Liu
,
L.
,
Zhang
,
L.
,
Xu
,
Y.
,
Gotsman
,
C.
, and
Gortler
,
S. J.
,
2008
, “
A Local/Global Approach to Mesh Parameterization
,”
Symposium on Geometry Processing (SGP'08)
, pp.
1495
1504
.
31.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
,
2002
, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graphics
,
21
(
3
), pp.
362
371
.
32.
Dijkstra
,
E.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
33.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061004
.
34.
TAUCS: A Library of Sparse Linear Solver
, http://www.tau.ac.il/stoledo/taucs
35.
Cignoni
,
P.
,
Rocchini
,
C.
, and
Scopigno
,
R.
,
1998
, “
Metro: Measuring Error on Simplified Surfaces
,”
Comput. Graphics Forum
,
17
(
2
), pp.
167
174
.
This content is only available via PDF.
You do not currently have access to this content.