With the advance of additive manufacturing (AM) processes, complex designs can be created with engineering metals. One specific advantage of this greater design space is the ability to create small internal channels and passageways for cooling high heat flux or temperature applications such as electronics and gas turbine airfoils. These applications can have complex shapes, which when coupled with the required small channel sizes, make traditional finishing processes a challenge for additively manufactured parts. Therefore, it is desirable for designers to be able to use AM parts with small internal channels that are as-built. To achieve this goal, however, designers must know how the AM process affects internal channel tolerances and roughness levels, since both impact the amount of cooling that can be achieved in actual applications. In this study, the direct metal laser sintering (DMLS) process, more generically referred to as selective laser melting (SLM), was used to additively manufacture test coupons. The AM build direction was varied to study its effect on small microsized, circular channels. Specifically, X-ray computed tomography (CT-scan) was used to nondestructively inspect the interior of the test coupons. Using the data from the CT-scans, internal surface roughness, geometric tolerances, and deviations from the computer-aided design (CAD) model were calculated. In comparing the data, significant differences were seen between the three different build directions.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling
,
Taylor and Francis
,
New York
.
2.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
3.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transf.
,
75
, pp.
58
74
.
4.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
616
, pp.
1
11
.
5.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.
6.
Cooper
,
D. E.
,
Stanford
,
M.
,
Kibble
,
K. A.
, and
Gibbons
,
G. J.
,
2012
, “
Additive Manufacturing for Product Improvement at Red Bull Technology
,”
Mater. Des.
,
41
, pp.
226
230
.
7.
Song
,
Y.-A.
, and
Koenig
,
W.
,
1997
, “
Experimental Study of the Basic Process Mechanism for Direct Selective Laser Sintering of Low-Melting Metallic Powder
,”
CIRP Ann.—Manuf. Technol.
,
46
(
1
), pp.
127
130
.
8.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2743
2751
.
9.
Senthilkumaran
,
K.
,
Pandey
,
P. M.
, and
Rao
,
P. V. M.
,
2009
, “
Influence of Building Strategies on the Accuracy of Parts in Selective Laser Sintering
,”
Mater. Des.
,
30
(
8
), pp.
2946
2954
.
10.
Simchi
,
A.
,
Petzoldt
,
F.
, and
Pohl
,
H.
,
2003
, “
On the Development of Direct Metal Laser Sintering for Rapid Tooling
,”
J. Mater. Process. Technol.
,
141
(
3
), pp.
319
328
.
11.
Khaing
,
M. W.
,
Fuh
,
J. Y. H.
, and
Lu
,
L.
,
2001
, “
Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Part
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
269
272
.
12.
Masood
,
S. H.
,
Rattanawong
,
W.
, and
Iovenitti
,
P.
,
2003
, “
A Generic Algorithm for a Best Part Orientation System for Complex Parts in Rapid Prototyping
,”
J. Mater. Process. Technol.,
139
(
1–3
), pp.
110
116
.
13.
Masood
,
S. H.
, and
Rattanawong
,
W.
,
2002
, “
A Generic Part Orientation System Based on Volumetric Error in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
19
(
3
), pp.
209
216
.
14.
Arni
,
R.
, and
Gupta
,
S.
,
2001
, “
Manufacturability Analysis of Flatness Tolerances in Solid Freeform Fabrication
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
148
156
.
15.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.
16.
Paul
,
R.
, and
Anand
,
S.
,
2013
, “
Material Shrinkage Modeling and Form Error Prediction in Additive Manufacturing Processes
,”
NAMRI/SME
, pp.
515
525
.
17.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
18.
Ning
,
Y.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
, and
Loh
,
H. T.
,
2006
, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
73
80
.
19.
Manfredi
,
D.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Ambrosio
,
E. P.
, and
Atzeni
,
E.
,
2013
, “
From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed Through Direct Metal Laser Sintering
,”
Materials
,
6
(
3
), pp.
856
869
.
20.
Stimpson
,
C. K.
,
Snyder
,
J. C.
, and
Thole
,
K. A.
, 2015, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME
Paper No. GT2015-43940.
21.
Snyder
,
J. C.
,
Stimpson
,
C. K.
, and
Thole
,
K. A.
,
2015
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME
Paper No. GT2015-43935.
22.
EOS GmbH, Basic Training EOSINT M 280.
23.
Becker
,
B.
,
Maier
,
D.
, and
Reinhart
,
C.
,
2012
, “
Computer Tomography Has Arrived in Automated Inspection Processes, Combining Material and Geometry Analyses
,” 18th World Conference on Non-Destructive Testing, Durban, South Africa, Apr. 16–20.
24.
VG Studio MAX, Vers. 2.2, Volume Graphics GmbH, Heidelberg, Germany.
25.
Zhu
,
H. H.
,
Lu
,
L.
, and
Fuh
,
J. Y. H.
,
2006
, “
Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder
,”
Proc. Inst. Mech. Eng. Part B
,
220
(
2
), pp.
183
190
.
26.
Raghunath
,
N.
, and
Pandey
,
P. M.
,
2007
, “
Improving Accuracy Through Shrinkage Modelling by Using Taguchi Method in Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
985
995
.
27.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.
28.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting With Evaporation
,”
Acta Mater.
,
57
(
20
), pp.
6006
6012
.
29.
Olakanmi
,
E. O.
,
2013
, “
Selective Laser Sintering/Melting (SLS/SLM) of Pure Al, Al–Mg, and Al–Si Powders: Effect of Processing Conditions and Powder Properties
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1387
1405
.
30.
DeGarmo
,
P. E.
,
Black
,
J. T.
, and
Kohser
,
R. A.
,
2003
,
Materials and Processes in Manufacturing
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.