This paper presents the challenges and solutions encountered while designing and then printing functionally gradient material (FGM) objects using an off the shelf fused deposition modeling (FDM) 3D printer. The printer, Big Builder Dual-Feed Extruder from 3dprinter4u, Noordwijkerhout, The Netherlands, has the unique design of extruding two different filaments out of one nozzle. By controlling the rate at which the two filaments are pulled into the melt chamber, FGM objects can be printed. Software challenges associated with process planning required to print an FGM object are solved by showing a method for printing a discretized gradient and by designing an open-loop control mechanism for the extruder motors. A design method is proposed that models an object using a level-set function (LSF) with a material gradient. Instead of merely identifying the boundaries of the object, the level set also models the material gradient within the object. This representation method along with a genetic algorithm finds an optimal design for an FGM cantilever beam that is then printed on the FDM printer. The model and genetic algorithm are also used to solve a standard topology optimization problem. The results are compared to a similar FGM topology optimization method in the literature. All the codes for this paper are made open source to facilitate future research.

References

References
1.
Sobczak
,
J. J.
, and
Drenchev
,
L.
,
2013
, “
Metallic Functionally Graded Materials: A Specific Class of Advanced Composites
,”
J. Mater. Sci. Technol.
,
29
(
4
), pp.
297
316
.
2.
Cui
,
W.
, and
Wisnom
,
M.
,
1993
, “
A Combined Stress-Based and Fracture-Mechanics-Based Model for Predicting Delamination in Composites
,”
Composites
,
24
(
6
), pp.
467
474
.
3.
Tymrak
,
B.
,
Kreiger
,
M.
, and
Pearce
,
J.
,
2014
, “
Mechanical Properties of Components Fabricated With Open-Source 3-D Printers Under Realistic Environmental Conditions
,”
Mater. Des.
,
58
, pp.
242
246
.
4.
Garland
,
A.
,
Mocko
,
G.
, and
Fadel
,
G.
,
2014
, “
Challenges in Designing and Manufacturing Fully Optimized Functional Gradient Material Objects
,”
ASME
Paper No. DETC2014-34544.
5.
Blouin
,
V. Y.
,
Oschwald
,
M.
, and
Hu
,
Y.
,
2005
, “
Design of Functionally Graded Structures for Enhanced Thermal Behavior
,”
ASME
Paper No. DETC2005-85290.
6.
Kou
,
X.
, and
Tan
,
S.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput. Aided Des.
,
39
(
4
), pp.
284
301
.
7.
Kou
,
X.
, and
Tan
,
S.
,
2005
, “
A Hierarchical Representation for Heterogeneous Object Modeling
,”
Comput. Aided Des.
,
37
(
3
), pp.
307
319
.
8.
Ozbolat
,
I. T.
, and
Khoda
,
A.
,
2014
, “
Design of a New Parametric Path Plan for Additive Manufacturing of Hollow Porous Structures With Functionally Graded Materials
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
041005
.
9.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.
10.
Cansizoglu
,
O.
,
Harrysson
,
O. L.
, and
West
,
H. A.
, II
,
2008
, “
Applications of Structural Optimization in Direct Metal Fabrication
,”
Rapid Prototyping J.
,
14
(
2
), pp.
114
122
.
11.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
12.
Hiller
,
J. D.
, and
Lipson
,
H.
,
2009
, “
Multi-Material Topological Optimization of Structures and Mechanisms
,”
11th Annual Conference on Genetic and Evolutionary Computation
(
GECCO '09
), pp.
1521
1528
.
13.
Huang
,
J.
, and
Fadel
,
G. M.
,
2000
, “
Heterogeneous Flywheel Modeling and Optimization
,”
Mater. Des.
,
21
(
2
), pp.
111
125
.
14.
Kou
,
X.
, and
Tan
,
S.
,
2007
, “
A Systematic Approach for Integrated Computer-Aided Design and Finite Element Analysis of Functionally-Graded-Material Objects
,”
Mater. Des.
,
28
(
10
), pp.
2549
2565
.
15.
Kou
,
X.
, and
Tan
,
S.
,
2008
, “
Heterogeneous Objects Modelling and Applications
,”
Springer-Verlag
,
Berlin
, pp.
42
59
.
16.
Kou
,
X.
,
Parks
,
G.
, and
Tan
,
S.
,
2012
, “
Optimal Design of Functionally Graded Materials Using a Procedural Model and Particle Swarm Optimization
,”
Comput. Aided Des.
,
44
(
4
), pp.
300
310
.
17.
Cho
,
J.
, and
Ha
,
D.
,
2002
, “
Optimal Tailoring of 2D Volume-Fraction Distributions for Heat-Resisting Functionally Graded Materials Using FDM
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
29
), pp.
3195
3211
.
18.
Cho
,
J.
, and
Ha
,
D.
,
2002
, “
Volume Fraction Optimization for Minimizing Thermal Stress in NiAl2O3 Functionally Graded Materials
,”
Mater. Sci. Eng., A
,
334
(
1
), pp.
147
155
.
19.
Ramani
,
A.
,
2011
, “
Multi-Material Topology Optimization With Strength Constraints
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
597
615
.
20.
Xia
,
Q.
, and
Wang
,
M. Y.
,
2008
, “
Simultaneous Optimization of the Material Properties and the Topology of Functionally Graded Structures
,”
Comput. Aided Des.
,
40
(
6
), pp.
660
675
.
21.
Gao
,
T.
, and
Zhang
,
W.
,
2010
, “
Topology Optimization Involving Thermo-Elastic Stress Loads
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
725
738
.
22.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “ “
Color” Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6
), pp.
469
496
.
23.
Cho
,
J.
, and
Shin
,
S.
,
2004
, “
Material Composition Optimization for Heat-Resisting FGMs by Artificial Neural Network
,”
Composites, Part A
,
35
(
5
), pp.
585
594
.
24.
Hu
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
,
2008
, “
Design for Manufacturing of 3D Heterogeneous Objects With Processing Time Consideration
,”
ASME J. Mech. Des.
,
130
(3), p.
031701
.
25.
Vaezi
,
M.
,
Chianrabutra
,
S.
, and
Mellor
,
B.
,
2013
, “
Multiple Material Additive manufacturing—Part 1: A Review: This Review Paper Covers a Decade of Research on Multiple Material Additive Manufacturing Technologies Which Can Produce Complex Geometry Parts With Different Materials
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
26.
Shin
,
K.
,
Natu
,
H.
, and
Dutta
,
D.
,
2003
, “
A Method for the Design and Fabrication of Heterogeneous Objects
,”
Mater. Des.
,
24
(
5
), pp.
339
353
.
27.
Morvan
,
S.
,
Fadel
,
G. M.
, and
Love
,
J.
,
2001
, “
Manufacturing of a Heterogeneous Flywheel on a LENS Apparatus
,”
12th Solid Freeform Fabrication Symposium
,
Austin, TX
, Aug. 8–10, pp.
553
560
.
28.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2014
, “
Towards Statically Balanced Compliant Joints Using Multimaterial 3D Printing
,”
ASME
Paper No. DETC2014-34532.
29.
Keating
,
S.
, and
Oxman
,
N.
,
2013
, “
Compound Fabrication: A Multi-Functional Robotic Platform for Digital Design and Fabrication
,”
Rob. Comput. Integr. Manuf.
,
29
(
6
), pp.
439
448
.
30.
Es-Said
,
O.
,
Foyos
,
J.
, and
Noorani
,
R.
,
2000
, “
Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples
,”
Mater. Manuf. Processes
,
15
(
1
), pp.
107
122
.
31.
Vega
,
V.
,
Clements
,
J.
, and
Lam
,
T.
,
2011
, “
The Effect of Layer Orientation on the Mechanical Properties and Microstructure of a Polymer
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
978
988
.
32.
Ranellucci
,
A.
, “
Slic3r
,” http://Slic3r.Org
33.
Setoodeh
,
S.
,
Abdalla
,
M.
, and
Gürdal
,
Z.
,
2005
, “
Combined Topology and Fiber Path Design of Composite Layers Using Cellular Automata
,”
Struct. Multidiscip. Optim.
,
30
(
6
), pp.
413
421
.
34.
Vermaak
,
N.
,
Michailidis
,
G.
, and
Parry
,
G.
,
2014
, “
Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using a Level Set Method
,”
Struct. Multidiscip. Optim.
,
50
(
4
), pp.
623
644
.
35.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
36.
Garland
,
A.
,
2015
, “
Source Code
,” https://Github.Com/Garland3/clemsonPhD
This content is only available via PDF.
You do not currently have access to this content.