The PolyJet material jetting process is uniquely qualified to create complex, multimaterial structures. However, key manufacturing constraints need to be explored and understood in order to guide designers in their use of the PolyJet process including (1) minimum manufacturable feature size, (2) removal of support material, (3) survivability of small features, and (4) the self-supporting angle in the absence of support material. The authors use a design of experiments (DOE) approach to identify the statistical significance of geometric and process parameters and to quantify the relationship between these significant parameters and part manufacturability. The results from this study include the identification of key variables, relationships, and quantitative design thresholds necessary to establish a preliminary set of design for additive manufacturing (DfAM) guidelines for material jetting. Experimental design studies such as the one in this paper are crucial to provide designers with the knowledge to ensure that their proposed designs are manufacturable with the PolyJet process, whether designed manually or by an automated method, such as topology optimization (TO).

References

References
1.
Watts
,
D. M.
, and
Hague
,
R.
,
2006
, “
Exploiting the Design Freedom of RM
,”
17th Annual International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
656
667
.
2.
Aremu
,
A.
,
Ashcroft
,
I.
,
Wildman
,
R.
,
Hague
,
R.
,
Tuck
,
C.
, and
Brackett
,
D.
,
2013
, “
The Effects of Bidirectional Evolutionary Structural Optimization Parameters on an Industrial Designed Component for Additive Manufacture
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
6
), pp.
794
807
.
3.
Chu
,
J.
,
Engelbrecht
,
S.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2010
, “
A Comparison of Synthesis Methods for Cellular Structures With Application to Additive Manufacturing
,”
Rapid Prototyp. J.
,
16
(
4
), pp.
459
472
.
4.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
5.
Hascoet
,
J. Y.
,
Ponche
,
R.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2012
, “
From Functional Specifications to Optimized CAD Model: Proposition of a New DFAM Methodology
,”
Innovative Developments in Virtual and Physical Prototyping
, Leiria, Portugal, pp.
467
472
.
6.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J. Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Robot. Comput. Integr. Manuf.
,
30
(
4
), pp.
389
398
.
7.
Harzheim
,
L.
, and
Graf
,
G.
,
2005
, “
A Review of Optimization of Cast Parts Using Topology Optimization: I—Topology Optimization Without Manufacturing Constraints
,”
Struct. Multidiscip. Optim.
,
30
(
6
), pp.
491
497
.
8.
Harzheim
,
L.
, and
Graf
,
G.
,
2005
, “
A Review of Optimization of Cast Parts Using Topology Optimization: II—Topology Optimization With Manufacturing Constraints
,”
Struct. Multidiscip. Optim.
,
31
(
5
), pp.
388
399
.
9.
Bin
,
M. S.
,
2011
,
Development of a Design Feature Database to Support Design for Additive Manufacturing
,
Loughborough University
,
Loughborough, UK
.
10.
Seepersad
,
C. C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
A Designer's Guide for Dimensioning and Tolerancing SLS Parts
,”
23rd Annual International Solid Freeform Fabrication Symposium
, Austin, pp.
921
931
.
11.
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Robust Topology Optimization Accounting for Spatially Varying Manufacturing Errors
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
49–52
), pp.
3613
3627
.
12.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
13.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
14.
Stratasys
,
2015
, “
Objet 350 Connex: Build Mid-Size Prototypes in Multiple Materials
,” Last accessed May 27, 2015, http://stratasys.com/3d-printers/design-series/precision/objet-connex350
15.
Stratasys
,
2015
, “
PolyJet Materials
,” Last accessed May 27, 2015, http://www.stratasys.com/materials/polyjet
16.
Moore
,
J. P.
, and
Williams
,
C. B.
,
2008
, “
Fatigue Characterization of 3D Printed Elastomer Material
,”
19th Annual International Solid Freeform Fabrication Symposium
, Austin, pp.
641
655
.
17.
Pilipović
,
A.
,
Raos
,
P.
, and
Šercer
,
M.
,
2007
, “
Experimental Analysis of Properties of Materials for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
40
(
1–2
), pp.
105
115
.
18.
Vieira
,
L. F.
, and
Paggi
,
R. A.
,
2012
, “
Thermal and Dynamic-Mechanical Behavior of Fullcure 3D Printing Resin Post-Cured by Different Methods
,”
Innovative Developments in Virtual and Physical Prototyping
, Leiria, Portugal, pp.
385
388
.
19.
Gibson
,
I.
,
Goenka
,
G.
,
Narasimhan
,
R.
, and
Bhat
,
N.
,
2010
, “
Design Rules for Additive Manufacture
,”
21st Annual International Solid Freeform Fabrication Symposium
, Austin, pp.
705
716
.
20.
Udroiu
,
R.
, and
Mihail
,
L.
,
2009
, “
Experimental Determination of Surface Roughness of Parts Obtained by Rapid Prototyping
,”
8th WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing
, Puerto De La Cruz, Tenerife, Canary Islands, Spain, pp.
283
286
.
21.
Udroiu
,
R.
, and
Nedelcu
,
A.
,
2011
, “
Optimization of Additive Manufacturing Processes Focused on 3D Printing
,”
Rapid Prototyping Technology—Principles and Functional Requirements
, pp.
1
28
.
22.
Singh
,
R.
,
2011
, “
Process Capability Study of Polyjet Printing for Plastic Components
,”
J. Mech. Sci. Technol.
,
25
(
4
), pp.
1011
1015
.
23.
Singh
,
R.
, and
Singh
,
V.
,
2011
, “
Experimental Investigations for Rapid Moulding Solution of Plastics Using Polyjet Printing
,”
Mater. Sci. Forum
,
701
, pp.
15
20
.
24.
Kim
,
G. D.
, and
Oh
,
Y. T.
,
2008
, “
A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Roughness, Speed, and Material Cost
,”
Proc. Inst. Mech. Eng. Part B
,
222
(
2
), pp.
201
215
.
25.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
.
26.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2013
, “
Identification on Some Design Key Parameters for Additive Manufacturing: Application on Electron Beam Melting
,”
Procedia CIRP
,
7
, pp.
264
269
.
27.
Moylan
,
S.
,
Slotwinski
,
J.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2012
, “
Proposal for a Standardized Test Artifact for Additive Manufacturing Machines and Processes
,”
23rd Annual International Solid Freeform Fabrication Symposium
, Austin, pp.
902
920
.
You do not currently have access to this content.