Recent progress in additive manufacturing (AM) allows for printing customized products with multiple materials and complex geometries that could form the basis of multimaterial designs with high performance and novel functions. Effectively designing such complex products for optimal performance within the confines of AM constraints is challenging due to the need to consider fabrication constraints while searching for optimal designs with a large number of variables, which stem from new AM capabilities. In this study, fabrication constraints are addressed through empirically characterizing multiple printed materials' Young's modulus and density using a multimaterial inkjet-based 3D-printer. Data curves are modeled for the empirical data describing two base printing materials and 12 mixtures of them as inputs for a computational optimization process. An optimality criteria (OC) method is developed to search for solutions of multimaterial lattices with fixed topology and truss cross section sizes. Two representative optimization studies are presented and demonstrate higher performance with multimaterial approaches in comparison to using a single material. These include the optimization of a cubic lattice structure that must adhere to a fixed displacement constraint and a compliant beam lattice structure that must meet multiple fixed displacement constraints. Results demonstrate the feasibility of the approach as a general synthesis and optimization method for multimaterial, lightweight lattice structures that are large-scale and manufacturable on a commercial AM printer directly from the design optimization results.

References

References
1.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
2.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review: This Review Paper Covers a Decade of Research on Multiple Material Additive Manufacturing Technologies Which Can Produce Complex Geometry Parts With Different Materials
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
3.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
4.
Hiller
,
J.
, and
Lipson
,
H.
,
2009
, “
Design and Analysis of Digital Materials for Physical 3D Voxel Printing
,”
Rapid Prototyping J.
,
15
(
2
), pp.
137
149
.
5.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
6.
Hammetter
,
C.
,
Rinaldi
,
R.
, and
Zok
,
F.
,
2013
, “
Pyramidal Lattice Structures for High Strength and Energy Absorption
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041015
.
7.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin, Germany
.
8.
Khot
,
N.
,
1981
, “
Algorithms Based on Optimality Criteria to Design Minimum Weight Structures
,”
Eng. Optim.
,
5
(
2
), pp.
73
90
.
9.
Jamiolahmadi
,
S.
, and
Barari
,
A.
,
2014
, “
Surface Topography of Additive Manufacturing Parts Using a Finite Difference Approach
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061009
.
10.
Ma
,
R. R.
,
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2015
, “
Hybrid Deposition Manufacturing: Design Strategies for Multi-Material Mechanisms Via 3D-Printing and Material Deposition
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021002
.
11.
Nelaturi
,
S.
,
Kim
,
W.
,
Rangarajan
,
A.
, and
Kurtoglu
,
T.
,
2014
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME
Paper No. DETC2014-34222.
12.
Hu
,
Y.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
White
,
D. R.
,
2006
, “
Optimal Design for Additive Manufacturing of Heterogeneous Objects Using Ultrasonic Consolidation
,”
Virtual Phys. Prototyping
,
1
(
1
), pp.
53
62
.
13.
Begley
,
M. R.
, and
Zok
,
F. W.
,
2014
, “
Optimal Material Properties for Mitigating Brain Injury During Head Impact
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031014
.
14.
KrzeminskI
,
D. E.
,
Goetz
,
J. T.
,
Janisse
,
A. P.
,
Lippa
,
N. M.
,
Gould
,
T. E.
,
Rawlins
,
J. W.
, and
Piland
,
S. G.
,
2011
, “
Investigation of Linear Impact Energy Management and Product Claims of a Novel American Football Helmet Liner Component
,”
Sports Technol.
,
4
(
1–2
), pp.
65
76
.
15.
Hammetter
,
C.
, and
Zok
,
F.
,
2014
, “
Compressive Response of Pyramidal Lattices Embedded in Foams
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011006
.
16.
Stanković
,
T.
,
Mueller
,
J.
,
Egan
,
P.
, and
Shea
,
K.
,
2015
, “
Optimization of Additively Manufactured Multi-Material Lattice Structures Using Generalized Optimality Criteria
,”
Computers and Information in Engineering Conference
,
Boston
, ASME Paper No. DETC2015-47403.
17.
Hansen
,
K.
,
Dau
,
N.
,
Feist
,
F.
,
Deck
,
C.
,
Willinger
,
R.
,
Madey
,
S. M.
, and
Bottlang
,
M.
,
2013
, “
Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury
,”
Accid. Anal. Prev.
,
59
, pp.
109
117
.
18.
Benson.
,
B. W.
,
Hamilton
,
G. M.
,
Meeuwisse
,
W. H.
,
McCrory
,
P.
, and
Dvorak
,
J.
,
2009
, “
Is Protective Equipment Useful in Preventing Concussion? A Systematic Review of the Literature
,”
Br. J. Sports Med.
,
43
(
1
), pp.
i56
i67
.
19.
Venkayya
,
V. B.
,
1978
, “
Structural Optimization: A Review and Some Recommendations
,”
Int. J. Numer. Methods Eng.
,
13
(
2
), pp.
203
228
.
20.
Venkayya
,
V. B.
,
1989
, “
Optimality Criteria: A Basis for Multidisciplinary Design Optimization
,”
Comput. Mech.
,
5
(
1
), pp.
1
21
.
21.
Venkayya
,
V. B.
,
Tischler
,
V. A.
,
Kolonay
,
R. M.
, and
Canfield
,
R. A.
,
1990
, “
A Generalized Optimality Criteria Method for Mathematical Optimization
,”
SIAM Conference on Geometric on Industrial Design Theory
, Wright-Patterson Air Force Base, OH, pp.
124
153
.
22.
Chang
,
P. S.
, and
Rosen
,
D. W.
,
2013
, “
The Size Matching and Scaling Method: A Synthesis Method for the Design of Mesoscale Cellular Structures
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
907
927
.
23.
Chu
,
J.
,
Engelbrecht
,
S.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2010
, “
A Comparison of Synthesis Methods for Cellular Structures With Application to Additive Manufacturing
,”
Rapid Prototyping J.
,
16
(
4
), pp.
275
283
.
24.
Ning
,
X.
, and
Pellegrino
,
S.
,
2012
, “
Design of Lightweight Structural Components for Direct Digital Manufacturing
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu
, p. 1807.
25.
Shea
,
K.
, and
Smith
,
I. F.
,
2006
, “
Improving Full-Scale Transmission Tower Design Through Topology and Shape Optimization
,”
J. Struct. Eng.
,
132
(
5
), pp.
781
790
.
26.
Doubrovski
,
Z.
,
Verlinden
,
J. C.
, and
Geraedts
,
J. M.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering
,
Washington, DC
, August 28–31,
ASME
Paper No. DETC2011-48131.
27.
Eiamsa-ard
,
K.
,
Ruan
,
J.
,
Ren
,
L.
, and
Liou
,
F. W.
,
2005
, “
Building Sequence of Boundary Model in Layered Manufacturing
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering (DETC2005-85163)
,
Long Beach, CA
, September 24–28,
ASME
Paper No. (DETC2005-85163).
28.
Routhu
,
S.
,
Kanakanala
,
D.
,
Ruan
,
J.
,
Liu
,
X. F.
, and
Liou
,
F.
,
2010
, “
2-D Path Planning for Direct Laser Deposition Process
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering
Montreal, QC, Canada
, January 01, 2010
ASME
Paper No. CP002010044090000415000001.
29.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graphics (TOG)
,
32
(
4
), pp.
1
9
.
30.
Hiller
,
J.
, and
Lipson
,
H.
,
2012
, “
Automatic Design and Manufacture of Soft Robots
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
457
466
.
31.
Hu
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
,
2008
, “
Design for Manufacturing of 3D Heterogeneous Objects With Processing Time Consideration
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031701
.
32.
Prager
,
W.
,
1968
, “
Optimality Criteria in Structural Design
,”
Proc. Natl. Acad. Sci. U. S. A.
,
61
(
3
), pp.
794
796
.
33.
Zhou
,
M.
, and
Rozvany
,
G.
,
1992
, “
DCOC: An Optimality Criteria Method for Large Systems. Part I: Theory
,”
Struct. Optim.
,
5
(
1–2
), pp.
12
25
.
34.
Khot
,
N.
,
Venkayya
,
V. B.
, and
Berke
,
N.
,
1976
, “
Optimum Structural Design With Stability Constraints
,”
Int. J. Numer. Methods Eng.
,
10
(
5
), pp.
1097
1114
.
35.
Venkayya
,
V. B.
, and
Khot
,
N.
,
1975
, “
Design of Optimum Structures to Impulse Type Loading
,”
AIAA J.
,
13
(
8
), pp.
989
994
.
36.
Flager
,
F.
,
Soremekun
,
G.
,
Adya
,
A.
,
Shea
,
K.
,
Haymaker
,
J.
, and
Fischer
,
M.
,
2014
, “
Fully Constrained Design: A General and Scalable Method for Discrete Member Sizing Optimization of Steel Truss Structures
,”
Comput. Struct.
,
140
, pp.
55
65
.
37.
Grierson
,
D.
, and
Chan
,
C.-M.
,
1993
, “
An Optimality Criteria Design Method for Tall Steel Buildings
,”
Adv. Eng. Software
,
16
(
2
), pp.
119
125
.
38.
Venkayya
,
V.
,
Khot
,
N.
, and
Reddy
,
V.
,
1969
, “
Energy Distribution in an Optimum Structural Design
,” Air Force Flight Dynamics Lab, Wright-Patterson, OH, Report No. AFFDL-TR-68-156.
40.
Mueller
,
J.
,
Kim
,
S.
,
Shea
,
K.
, and
Daraio
,
C.
,
2015
, “
Tensile Properties of PolyJet 3D-Printed Parts: Critical Process Parameters and How to Efficiently Analyze Them
,”
ASME 2015 International Computers and Information in Engineering
,
Boston, MA
,
ASME
Paper No. DETC2015-48024.
42.
Venkayya
,
V. B.
, and
Tischler
,
V. A.
,
1989
,
A Compound Scaling Algorithm for Mathematical Optimization
,
Air Force Flight Dynamics Lab
,
Wright-Patterson, OH
.
43.
Ashby
,
M. F.
,
1999
,
Materials Selection and Process in Mechanical Design
,
Butterworth Heinemann
,
Oxford, UK
.
This content is only available via PDF.
You do not currently have access to this content.