Additive manufacturing (AM) of metallic parts provides engineers with unprecedented design freedom. This enables designers to consolidate assemblies, lightweight designs, create intricate internal geometries for enhanced fluid flow or heat transfer performance, and fabricate complex components that previously could not be manufactured. While these design benefits may come “free” in many cases, it necessitates an understanding of the limitations and capabilities of the specific AM process used for production, the system-level design intent, and the postprocessing and inspection/qualification implications. Unfortunately, design for additive manufacturing (DfAM) guidelines for metal AM processes are nascent given the rapid advancements in metal AM technology recently. In this paper, we present a case study to provide insight into the challenges that engineers face when redesigning a multicomponent assembly into a single component fabricated using laser-based powder bed fusion for metal AM. In this case, part consolidation is used to reduce the weight by 60% and height by 53% of a multipart assembly while improving performance and minimizing leak points. Fabrication, postprocessing, and inspection issues are also discussed along with the implications on design. A generalized design approach for consolidating parts is presented to help designers realize the freedoms that metal AM provides, and numerous areas for investigation to improve DfAM are also highlighted and illustrated throughout the case study.

References

References
1.
Campbell
,
I.
,
Bourell
,
D.
, and
Gibson
,
I.
,
2012
, “
Additive Manufacturing: Rapid Prototyping Comes of Age
,”
Rapid Prototyping J.
,
18
(
4
), pp.
255
258
.
2.
Frazier
,
W. E.
,
2010
, “
Direct Digital Manufacturing of Metallic Components: Vision and Roadmap
,”
21st Annual International Solid Freeform Fabrication Symposium
,
Austin
,
TX
, Aug. 9–11, pp.
717
732
.
3.
GE Capital
,
2013
, “
Additive Manufacturing: Redefining What's Possible
,” GE Capital, Norwalk, CT, http://www.americas.gecapital.com/GECA_Document/Additive_Manufacturing_Fall_2013.pdf
4.
GE Reports
,
2015
, “
The FAA Cleared the First 3D Printed Part to Fly in a Commercial Jet Engine From GE
,” General Electric, Fairfield, CT, http://www.gereports.com/post/116402870270/the-faa-cleared-the-first-3d-printed-part-to-fly
5.
Szondy
,
D.
,
2015
, “
GE Announces First FAA Approved 3D-Printed Engine Part
,” Gizmag, http://www.gizmag.com/ge-faa-3d-printing-aircraft-engine-part/37018/
6.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. R.
, eds.,
2009
,
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,
The University of Texas at Austin
,
Austin, TX
.
7.
ASTM F2792-12a
,
2012
,
Standard Terminology for Additive Manufacturing Technologies
,
ASTM International
,
West Conshohocken, PA
, p.
3
.
8.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
9.
Murr
,
L. E.
,
Martinez
,
E.
,
Amato
,
K. N.
,
Gaytan
,
S. M.
,
Hernandez
,
J.
,
Ramirez
,
D. A.
,
Shindo
,
P. W.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2012
, “
Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science
,”
J. Mater. Res. Technol.
,
1
(
1
), pp.
42
54
.
10.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
.
11.
Anam
,
M. A.
,
Pal
,
D.
, and
Stucker
,
B.
,
2013
, “
Modeling and Experimental Validation of Nickel-Based Super Alloy (Inconel 625) Made Using Selective Laser Melting
,”
Solid Freeform Fabrication (SFF) Symposium
,
University of Texas at Austin
,
Austin, TX
, Aug. 12–14, pp.
463
473
.
12.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
, pp.
51
60
.
13.
Pal
,
D.
,
Patil
,
N.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
14.
Wang
,
D.
,
Yang
,
Y.
,
Liu
,
R.
,
Xiao
,
D.
, and
Sun
,
J.
,
2013
, “
Study on the Designing Rules and Processability of Porous Structure Based on Selective Laser Melting (SLM)
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1734
1742
.
15.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
16.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
17.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2015
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME
Paper No. GT2015-43940.
18.
Duleba
,
B.
,
Greškovič
,
F.
, and
Sikora
,
J. W.
,
2011
, “
Materials and Finishing Methods of DMLS Manufactured Parts
,”
Transfer Inovácií
,
21
, pp.
143
148
.
19.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
20.
Rosen
,
D.
,
2014
, “
Design for Additive Manufacturing: Past, Present, and Future Directions
,”
ASME J. Mech. Des.
,
136
(
9
), p.
090301
.
21.
Thomas
,
D.
,
2009
, “
The Development of Design Rules for Selective Laser Melting
,” Ph.D. dissertation,
University of Wales Institute
,
Cardiff, UK
.
22.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4
,”
J. Laser Appl.
,
27
(
S1
), p.
S14001
.
23.
Vayre
,
B.
,
Vigant
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
.
24.
Ponche
,
R.
,
Hascoet
,
J. Y.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2012
, “
A New Global Approach to Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
7
(
2
), pp.
93
105
.
25.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Rob. Comput.-Integr. Manuf.
,
30
(
4
), pp.
389
398
.
26.
Calignano
,
F.
,
2014
, “
Design Optimization of Supports for Overhanging Structures in Aluminum and Titanium Alloys by Selective Laser Melting
,”
Mater. Des.
,
64
, pp.
203
213
.
27.
Wright
,
S.
,
2015
, “
3D Printing Titanium & the Bin of Broken Dreams (Part 3)
,” 3D Printing Industry, Last accessed Mar. 12, 2015, http://3dprintingindustry.com/2015/03/12/3d-printing-titanium-the-bin-of-broken-dreams-part-3/
28.
Bayer Corporation
,
2000
,
Part and Mold Design: A Design Guide
,
Bayer Material Science
,
Pittsburgh, PA
.
29.
General Electric
,
1999
,
GE Engineering Thermoplastics Design Guide
,
General Electric Company
,
Pittsfield, MA
.
30.
Fagade
,
A. A.
, and
Kazmer
,
D.
,
1999
, “
Optimal Component Consolidation in Molded Product Design
,”
ASME
Paper No. DETC1999/DFM-8921.
31.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
32.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
33.
Wohlers
,
T.
, and
Caffrey
,
T.
,
2013
, “
Additive Manufacturing: Going Mainstream
,”
Manuf. Eng.
,
151
(
6
), pp.
67
73
.
34.
Crump
,
S.
,
2009
,
Direct Digital Manufacturing Part Two: Advantages and Considerations
,
Stratasys Incorporate
,
Eden Prairie, MN
.
35.
Frey
,
D.
,
Palladino
,
J.
,
Sullivan
,
J.
, and
Atherton
,
M.
,
2007
, “
Part Count and Design of Robust Systems
,”
Syst. Eng.
,
10
(
3
), pp.
203
221
.
36.
Boothroyd
,
G.
, and
Dewhurst
,
P.
,
1989
,
Product Design for Assembly
,
Boothroyd Dewhurst
,
Wakefield, RI
.
37.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W.
,
2002
,
Product Design for Manufacture and Assembly
,
Marcel Dekker
,
New York
.
38.
Zelinski
,
P.
,
2015
, “
Additive's Idiosyncrasies
,” Additive Manufacturing, http://www.additivemanufacturinginsight.com/articles/additives-idiosyncrasies
39.
Simpson
,
T. W.
,
2015
, “
AM Needs MEs
,”
ASME Mech. Eng. Mag.
,
137
(
8
), pp.
30
35
.
40.
Schmelzle
,
J.
,
2013
, “
Three-Dimensional (3D) Portable Document Format (PDF) as the Solution for Model Based Definition (MBD)
,” Support Equipment Engineering Division, Naval Air Warfare Center Aircraft Division, Lakehurst, NJ, Design Data Report No. NAWCADLKE-DDR-486600-0008.
41.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2015
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME
Paper No. GT2015-43935.
42.
Seppala
,
J.
,
Rockel
,
D.
, and
Hupfer
,
A.
,
2014
, “
Performance and Functionality Based Design Methods for Improved and Novel Aircraft Engine Components for Additive Manufacturing
,”
25th Annual International Solid Freeform Fabrication Symposium
,
University of Texas in Austin
,
Austin, TX
, Aug. 4–6, pp.
837
847
.
43.
Emmelmann
,
C.
,
Sander
,
P.
,
Kranz
,
J.
, and
Wycisk
,
E.
,
2011
, “
Laser Additive Manufacturing and Bionics: Redefining Lightweight Design
,”
Phys. Procedia
,
12
(
Pt. A
), pp.
364
368
.
44.
Bendsoe
,
M.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization, Theory, Methods and Applications
,
Springer-Verlag
,
New York
.
45.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
46.
Mohammadi
,
B.
, and
Pironneau
,
O.
,
2004
, “
Shape Optimization in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
255
279
.
47.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R. B.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscip. Optim.
,
30
(
3
), pp.
181
192
.
48.
Yoon
,
G. H.
,
2009
, “
Topology Optimization for Stationary Fluid–Structure Interaction Problems Using a New Monolithic Formulation
,”
Int. Numer. Methods Eng.
,
82
(
5
), pp.
591
616
.
49.
Allen
,
M.
, and
Maute
,
K.
,
2005
, “
Reliability-Based Shape Optimization of Structures Undergoing Fluid–Structure Interaction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
30–33
), pp.
3472
3495
.
50.
Ayre
,
M.
,
2014
, “
DMLS Design Guide V4
,” Last accessed Feb. 27, 2015, https://prezi.com/q55mkdhc7dwo/dmls-design-guide-v4/
51.
Bralla
,
J. G.
, ed.,
1999
,
Design for Manufacturability Handbook
,
McGraw-Hill
,
New York
.
52.
Poli
,
C.
,
2002
,
Design for Manufacturing: A Structured Approach
,
Butterworth Heinemann
,
Boston, MA
.
You do not currently have access to this content.