Topology optimization of an air-cooled heat sink considering heat conduction plus side-surface convection is presented. The optimization formulation is explained along with multiple design examples. A postprocessing procedure is described to synthesize manifold or “water-tight” solid model computer-aided design (CAD) geometry from three-dimensional (3D) point-cloud data extracted from the optimization result. Using this process, a heat sink is optimized for confined jet impingement air cooling. A prototype structure is fabricated out of AlSi12 using additive layer manufacturing (ALM). The heat transfer and fluid flow performance of the optimized heat sink are experimentally evaluated, and the results are compared with benchmark plate and pin-fin heat sink geometries that are conventionally machined out of aluminum and copper. In two separate test cases, the experimental results indicate that the optimized ALM heat sink design has a higher coefficient of performance (COP) relative to the benchmark heat sink designs.

References

References
1.
Tummala
,
R.
,
2001
,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
2.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
3.
Kim
,
S. J.
, and
Lee
,
S. W.
,
1996
,
Air Cooling Technology for Electronic Equipment
,
CRC, Inc.
,
Boca Raton, FL
.
4.
Incropera
,
F. P.
,
1999
,
Liquid Cooling of Electronics Devices by Single-Phase Convection
,
Wiley
,
New York
.
5.
Mudawar
,
I.
,
2011
, “
Two-Phase Micro-Channel Heat Sinks: Theory, Applications and Limitations
,”
ASME
Paper No. AJTEC2011-44005.
6.
Sharar
,
D. J.
,
Morgan
,
B.
,
Jankowski
,
N. R.
, and
Bar-Cohen
,
A.
,
2011
, “
Two-Phase Minichannel Cold Plate for Army Vehicle Power Electronics
,”
ASME
Paper No. IPACK2011-52079.
7.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multi-Pass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.
8.
Dede
,
E. M.
, and
Liu
,
Y.
,
2013
, “
Experimental and Numerical Investigation of a Multi-Pass Branching Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
51
60
.
9.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Nova
,
H. F. V.
,
de Lima
,
C. R.
, and
Silva
,
E. C. N.
,
2013
, “
Development of Heat Sink Device by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
64
, pp.
759
772
.
10.
Dede
,
E. M.
,
Lee
,
J.
, and
Nomura
,
T.
,
2014
,
Multiphysics Simulation: Electromechanical System Applications and Optimization
,
Springer
,
London
.
11.
Wits
,
W. W.
,
Weitkampa
,
S. J.
, and
van Esb
,
J.
,
2013
, “
Metal Additive Manufacturing of a High-Pressure Micro-Pump
,”
Procedia CIRP
,
7
, pp.
252
257
.
12.
Wong
,
M.
,
Owen
,
I.
,
Sutcliffe
,
C. J.
, and
Puri
,
A.
,
2009
, “
Convective Heat Transfer and Pressure Losses Across Novel Heat Sinks Fabricated by Selective Laser Melting
,”
Int. J. Heat Mass Transfer.
,
52
(
1–2
), pp.
281
288
.
13.
Ventola
,
L.
,
Robottia
,
F.
,
Dialameha
,
M.
,
Calignanob
,
F.
,
Manfredib
,
D.
,
Chiavazzoa
,
E.
, and
Asinaria
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.
14.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
24th Solid Freeform Fabrication Symposium
.
15.
Meisel
,
N.
,
Gaynor
,
A.
,
Williams
,
C.
, and
Guest
,
J.
,
2013
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via Polyjet 3D Printing
,”
24th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
.
16.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
17.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization—Theory, Methods, and Applications
,
2nd ed.
,
Springer
,
Berlin
.
18.
Torquato
,
S.
,
Hyun
,
S.
, and
Donev
,
A.
,
2002
, “
Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity
,”
Phys. Rev. Lett.
,
89
(
26
), p.
266601
.
19.
Bruns
,
T. E.
,
2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2859
2873
.
20.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.
21.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
.
22.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimisation for Natural Convection Problems
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
699
721
.
23.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
24.
COMSOL AB,
2008
, COMSOL Multiphysics ver. 3.5a.
25.
Kawamoto
,
A.
,
Matsumori
,
T.
,
Yamasaki
,
S.
,
Nomura
,
T.
,
Kondoh
,
T.
, and
Nishiwaki
,
S.
,
2011
, “
Heaviside Projection Based Topology Optimization by a PDE-Filtered Scalar Function
,”
Struct. Multidisicip. Optim.
,
44
(
1
), pp.
19
24
.
26.
Wikipedia
,
2015
, “
Fin (Extended Surface)
,” http://en.wikipedia.org/wiki/Fin_(extended_surface)
27.
Aavid Thermalloy
,
2015
, “
Board Level Heat Sinks
,” http://www.aavid.com/product-group/standard
28.
Schroeder
,
V. P.
, and
Garimella
,
S. V.
,
1998
, “
Heat Transfer From a Discrete Heat Source in Confined Air Jet Impingement
,”
11th IHTC
, Vol.
5
. August 23–28,
Kyongju, Korea
.
29.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
,
2000
, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
2
), pp.
300
308
.
30.
Issa
,
J. A.
, and
Ortega
,
A.
,
2006
, “
Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
61
70
.
31.
Koguchi
,
A.
, and
Kikuchi
,
N.
,
2006
, “
A Surface Reconstruction Algorithm for Topology Optimization
,”
Eng. Comput.
,
22
(
1
), pp.
1
10
.
32.
Visual Computing Lab - ISTI - CNR
,
2012
, “MESHLAB Ver. 1.3.2,” http://meshlab.sourceforge.net/
33.
Dassault Systemes
,
2013
, Solidworks Premium ver. SP4.0.
34.
Mercury Centre
,
2015
, “
Additive Layer Manufacture
,” http://mercurycentre.org/facilities/additive-layer-manufacture
35.
Yu
,
S.-H.
,
Lee
,
K.-S.
, and
Yook
,
S.-J.
,
2011
, “
Optimum Design of a Radial Heat Sink Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2499
2505
.
36.
Li
,
H.-Y.
, and
Chen
,
K.-Y.
,
2007
, “
Thermal Performance of Plate-Fin Heat Sinks Under Confined Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1963
1970
.
37.
Bejan
,
A.
,
Dincer
,
I.
,
Lorente
,
S.
,
Miguel
,
A.
, and
Reis
,
H.
,
2004
,
Porous and Complex Flow Structures in Modern Technologies
,
Springer-Verlag
,
New York
.
38.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2015
, “
Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces
,”
Int. J. Therm. Sci.
,
87
, pp.
110
120
.
39.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effect of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.
This content is only available via PDF.
You do not currently have access to this content.