Additive manufacturing (AM) has increasingly gained attention in the last decade as a versatile manufacturing process for customized products. AM processes can create complex, freeform shapes while also introducing features, such as internal cavities and lattices. These complex geometries are either not feasible or very costly with traditional manufacturing processes. The geometric freedoms associated with AM create new challenges in maintaining and communicating dimensional and geometric accuracy of parts produced. This paper reviews the implications of AM processes on current geometric dimensioning and tolerancing (GD&T) practices, including specification standards, such as ASME Y14.5 and ISO 1101, and discusses challenges and possible solutions that lie ahead. Various issues highlighted in this paper are classified as (a) AM-driven specification issues and (b) specification issues highlighted by the capabilities of AM processes. AM-driven specification issues may include build direction, layer thickness, support structure related specification, and scan/track direction. Specification issues highlighted by the capabilities of AM processes may include region-based tolerances for complex freeform surfaces, tolerancing internal functional features, and tolerancing lattice and infills. We introduce methods to address these potential specification issues. Finally, we summarize potential impacts to upstream and downstream tolerancing steps, including tolerance analysis, tolerance transfer, and tolerance evaluation.

References

References
1.
Mims
,
C.
,
2013
,
3D Printing Will Explode in 2014, Thanks to the Expiration of Key Patents
,
Quartz
,
New York
.
2.
ASTM Standard F2792
,
2012
,
Standard Terminology for Additive Manufacturing Technologies
,
ASTM
,
West Conshohocken, PA
.
3.
Kemmerer
,
S. J.
,
1999
,
STEP: The Grand Experience
,
U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology
,
Gaithersburg, MD
.
4.
ISO, S. A. H.
,
2006
,
STEP Application Handbook
,
SCRA
,
North Charleston, SC
.
5.
ISO 1101:2012
,
2012
,
Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out
,
ISO
,
Geneva, Switzerland
.
6.
ASME Y14.5-2009
,
2009
,
Dimensioning and Tolerancing
,
ASME
,
New York
.
7.
Pratt
,
M. J.
,
Bhatt
,
A.
,
Dutta
,
D.
,
Lyons
,
K. W.
,
Patil
,
L.
, and
Sriram
,
R. D.
,
2002
, “
Progress Towards an International Standard for Data Transfer in Rapid Prototyping and Layered Manufacturing
,”
Comput. Aided Des.
,
34
(
14
), pp.
1111
1121
.
8.
“Committee F42 on Additive Manufacturing Technologies,” Last accessed Jan. 26, 2015, http://www.astm.org/COMMITTEE/F42.htm
9.
“ISO—Technical Committees—ISO/TC 261—Additive Manufacturing,” Last accessed Jan. 26, 2015, http://www.iso.org/iso/home/standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=629086
10.
ISO/ASTM 52915:2013
,
2013
,
Standard Specification for Additive Manufacturing File Format (AMF) Version 1.1
,
ISO
,
Geneva, Switzerland
.
11.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2011
, “
A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121002
.
12.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
13.
Bak
,
D.
,
2003
, “
Rapid Prototyping or Rapid Production? 3D Printing Processes Move Industry Towards the Latter
,”
Assem. Autom.
,
23
(
4
), pp.
340
345
.
14.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
,
Wiley
,
Hoboken, NJ
.
15.
Bradshaw
,
S.
,
Bowyer
,
A.
, and
Haufe
,
P.
,
2010
, “
The Intellectual Property Implications of Low-Cost 3D Printing
,”
ScriptEd
,
7
(
1
), pp.
5
31
.
16.
Berman
,
B.
,
2012
, “
3-D Printing: The New Industrial Revolution
,”
Bus. Horiz.
,
55
(
2
), pp.
155
162
.
17.
Ko
,
S. H.
,
Chung
,
J.
,
Hotz
,
N.
,
Nam
,
K. H.
, and
Grigoropoulos
,
C. P.
,
2010
, “
Metal Nanoparticle Direct Inkjet Printing for Low-Temperature 3D Micro Metal Structure Fabrication
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125010
.
18.
Ramos
,
J. A.
,
Murphy
,
J.
,
Wood
,
K.
,
Bourell
,
D. L.
, and
Beaman
,
J. J.
,
2001
, “
Surface Roughness Enhancement of Indirect-SLS Metal Parts by Laser Surface Polishing
,”
Solid Freeform Fabrication Proceedings
, pp.
28
38
.
19.
Zhao
,
J.
,
Li
,
Y.
,
Zhang
,
J.
,
Yu
,
C.
, and
Zhang
,
Y.
,
2003
, “
Analysis of the Wear Characteristics of an EDM Electrode Made by Selective Laser Sintering
,”
J. Mater. Process. Technol.
,
138
(
1
), pp.
475
478
.
20.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Post-Processing of Selective Laser Sintered Metal Parts
,”
Rapid Prototyping J.
,
1
(
2
), pp.
36
44
.
21.
Yoo
,
J.
,
Cima
,
M. J.
,
Khanuja
,
S.
, and
Sachs
,
E. M.
,
1993
, “
Structural Ceramic Components by 3D Printing
,”
Solid Freeform Fabrication Symposium
, DTIC Document, pp.
40
50
.
22.
Mott
,
M.
,
Song
,
J.-H.
, and
Evans
,
J. R.
,
1999
, “
Microengineering of Ceramics by Direct Ink-Jet Printing
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1653
1658
.
23.
Pfister
,
A.
,
Landers
,
R.
,
Laib
,
A.
,
Hübner
,
U.
,
Schmelzeisen
,
R.
, and
Mülhaupt
,
R.
,
2004
, “
Biofunctional Rapid Prototyping for Tissue-Engineering Applications: 3D Bioplotting Versus 3D Printing
,”
J. Polym. Sci., Part A
,
42
(
3
), pp.
624
638
.
24.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
25.
Taboas
,
J. M.
,
Maddox
,
R. D.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
,
2003
, “
Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds
,”
Biomaterials
,
24
(
1
), pp.
181
194
.
26.
Lam
,
C. X. F.
,
Mo
,
X. M.
,
Teoh
,
S.-H.
, and
Hutmacher
,
D. W.
,
2002
, “
Scaffold Development Using 3D Printing With a Starch-Based Polymer
,”
Mater. Sci. Eng. C
,
20
(
1
), pp.
49
56
.
27.
“Nature Triumphant: Modern Machine Shop,” Last accessed Jan. 20, 2015, http://www.mmsonline.com/columns/nature-triumphant
28.
Nathan
,
S.
,
2011
, “
Printing Parts
,” MIT Technology Review, Last accessed Jan. 20, 2015, http://www.technologyreview.com/demo/425133/printing-parts/
29.
“An Introduction to Metal Additive Manufacturing/3D Printing,” Last accessed Jan. 20, 2015, http://www.metal-am.com/introduction_to_metal-additive_manufacturing
30.
“3ders.org: Arup Pioneers 3D Printing of Structural Steel for Construction|3D Printer News & 3D Printing News,” Last accessed Jan. 20, 2015, http://www.3ders.org/articles/20140609-arup-pioneers-3d-printing-of-structural-steel-for-construction.html
31.
“Call for Proposals to Create Additive Manufacturing Innovation Institute,” Last accessed Jan. 21, 2015, http://www.nist.gov/director/call-for-proposals-to-create-additive-manufacturing-innovation-institute.cfm
32.
“Engineering With Microlattices—Doing More by Using Less—GrabCAD News,” Last accessed Jan. 21, 2015, http://blog.grabcad.com/blog/2012/12/03/doing-more-by-using-less/
33.
“Blades and Bones: The Many Faces of 3D Printing—GE Reports,” Last accessed Nov. 21, 2014, http://www.gereports.com/post/74545249161/blades-and-bones-the-many-faces-of-3d-printing
34.
“The Areion by Formula Group T: The World's First 3D Printed Race Car|Materialise,” Last accessed Nov. 21, 2014, http://www.materialise.com/cases/the-areion-by-formula-group-t-the-world-s-first-3d-printed-race-car
35.
“The Mk2 Arrived!|anthromod.com,” Last accessed Oct. 09, 2014, http://anthromod.com/2012/05/24/the-mk2-arrived/
36.
“Brain-Gear.png (PNG Image, 487 × 650 pixels),” Last accessed Oct. 15, 2014, http://sensible-tech.com/wordpress/wp-content/uploads/2012/05/Brain-Gear.png
37.
Church
,
K. H.
,
Tsang
,
H.
,
Rodriguez
,
R.
,
Defembaugh
,
P.
, and
Rumpf
,
R.
,
2013
, “
Printed Circuit Structures, the Evolution of Printed Circuit Boards
,”
IPC APEX EXPO Conference Proceedings
, San Diego, CA, Feb. 19–21.
38.
“Detail|3D Resources (Beta),” Last accessed Feb. 06, 2015, http://nasa3d.arc.nasa.gov/detail/wrench-mis
39.
Srinivasan
,
V.
,
1999
, “
A Geometrical Product Specification Language Based on a Classification of Symmetry Groups
,”
Comput. Aided Des.
,
31
(
11
), pp.
659
668
.
40.
Walker
,
R. K.
, and
Srinivasan
,
V.
,
1994
, “
Creation and Evolution of the ASME Y14. 5.1 M Standard
,”
Manuf. Rev.
,
7
(
1
), pp.
16
23
.
41.
Zhang
,
B. C.
,
1992
, “
Geometric Modeling of Dimensioning and Tolerancing
,” Ph.D. thesis, Arizona State University, Tempe, AZ.
42.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.
43.
ASME Y14.8
,
2009
,
Casting, Forgings and Molded Parts
,
ASME
,
New York
.
44.
ISO/DIS 8062-4
, “
Geometrical Product Specifications (GPS)—Dimensional and Geometrical Tolerances for Moulded Parts—Part 4: General Tolerances for Castings Using Profile Tolerancing in a General Datum System
,” Last accessed Feb. 19, 2015, http://www.iso.org/iso/catalogue_detail.htm?csnumber=60774
45.
ASME Y14.37-2012
,
2012
,
Y14.37: Composite Part Drawings
,”
ASME
,
New York
, p.
32
.
46.
Abd-Elghany
,
K.
, and
Bourell
,
D. L.
,
2012
, “
Property Evaluation of 304L Stainless Steel Fabricated by Selective Laser Melting
,”
Rapid Prototyping J.
,
18
(
5
), pp.
420
428
.
47.
Brodin
,
H.
, and
Andersson
,
O.
,
2013
, “
Mechanical Testing of a Selective Laser Melted Superalloy
,” 13th International Conference on Fracture, Beijing, Jun. 16–21.
48.
Frank
,
D.
, and
Fadel
,
G.
,
1995
, “
Expert System-Based Selection of the Preferred Direction of Build for Rapid Prototyping Processes
,”
J. Intell. Manuf.
,
6
(
5
), pp.
339
345
.
49.
Cheng
,
W.
,
Fuh
,
J. Y. H.
,
Nee
,
A. Y. C.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Miyazawa
,
T.
,
1995
, “
Multi-Objective Optimization of Part-Building Orientation in Stereolithography
,”
Rapid Prototyping J.
,
1
(
4
), pp.
12
23
.
50.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.
51.
Paul
,
R.
, and
Anand
,
S.
,
2014
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
(in press).
52.
Siraskar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011007
.
53.
Schmidt
,
R.
, and
Umetani
,
N.
,
2014
, Branching Support Structures for 3D Printing,
SIGGRAPH '14
,
ACM
,
New York
, p.
9
.
54.
Vanek
,
J.
,
Galicia
,
J. A.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Comput. Graphics Forum
,
33
(
5
), pp.
117
125
.
55.
Kumar
,
P.
,
Santosa
,
J. K.
,
Beck
,
E.
, and
Das
,
S.
,
2004
, “
Direct-Write Deposition of Fine Powders Through Miniature Hopper-Nozzles for Multi-Material Solid Freeform Fabrication
,”
Rapid Prototyping J.
,
10
(
1
), pp.
14
23
.
56.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
,
11
(
1
), pp.
9
17
.
57.
Willis
,
K.
,
Brockmeyer
,
E.
,
Hudson
,
S.
, and
Poupyrev
,
I.
,
2012
, “
Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices
,”
25th Annual ACM Symposium on User Interface Software and Technology
(
UIST
),
ACM
,
New York
, pp.
589
598
.
58.
Liu
,
J.
, and
Jang
,
B. Z.
,
2004
, “
Layer Manufacturing of a Multi-Material or Multi-Color 3-D Object Using Electrostatic Imaging and Lamination
,” Google Patents, Patent No. US 6780368.
59.
Chen
,
D.
,
Levin
,
D. I.
,
Didyk
,
P.
,
Sitthi-Amorn
,
P.
, and
Matusik
,
W.
,
2013
, “
Spec2Fab: A Reducer-Tuner Model for Translating Specifications to 3D prints
,”
ACM Trans. Graphics
,
32
(
4
), p.
135
.
60.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput. Aided Des.
,
39
(
4
), pp.
284
301
.
61.
Hiller
,
J. D.
, and
Lipson
,
H.
,
2009
, “
STL 2.0: A Proposal for a Universal Multi-Material Additive Manufacturing File Format
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 5–9, pp.
266
278
.
62.
US Department of Commerce
, “
MBE PMI Validation and Conformance Testing
,” Last accessed Feb. 10, 2015, http://www.nist.gov/el/msid/infotest/mbe-pmi-validation.cfm
63.
Thijs
,
L.
,
Vrancken
,
B.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2013
, “
The Influence of Process Parameters and Scanning Strategy on the Texture in Ti6Al4V Part Produced by Selective Laser Melting
,” Symposium on Advanced Materials, Processes and Applications for Additive Manufacturing, Proceedings of Materials Science and Technology 2013, Montreal, QC, Canada, Oct. 27–31.
64.
“GE Jet Engine Bracket Challenge—GrabCAD,” Last accessed Jan. 26, 2015, https://grabcad.com/challenges/ge-jet-engine-bracket-challenge/results
65.
Farin
,
G. E.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
,
Morgan Kaufmann
,
San Francisco, CA
.
66.
“M Kurniawan GE Jet Engine Bracket Version 1.2—STEP/IGES—3D CAD Model—GrabCAD,” Last accessed Jan. 26, 2015, https://grabcad.com/library/m-kurniawan-ge-jet-engine-bracket-version-1-2-1
67.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
New York
.
68.
Bauza
,
M. B.
,
Moylan
,
S. P.
,
Panas
,
R. M.
,
Burke
,
S. C.
,
Martz
,
H. E.
,
Taylor
,
J. S.
,
Alexander
,
P.
,
Knebel
,
R. H.
, and
Bhogaraju
,
R.
,
2014
, “
Study of Accuracy of Parts Produced Using Additive Manufacturing
,” ASPE Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, Berkeley, CA, Apr. 13–16.
69.
Slotwinski
,
J.
, and
Moylan
,
S.
,
2014
, “
Metals-Based Additive Manufacturing: Metrology Needs and Standardization Efforts
,”
2014 ASPE Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing
, Berkeley, CA, Apr. 13–16.
70.
Shah
,
J. J.
,
Ameta
,
G.
,
Shen
,
Z.
, and
Davidson
,
J.
,
2007
, “
Navigating the Tolerance Analysis Maze
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
705
718
.
71.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
72.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1998
, “
The Datum Flow Chain: A Systematic Approach to Assembly Design and Modeling
,”
Res. Eng. Des.
,
10
(
3
), pp.
150
165
.
73.
Desrochers
,
A.
,
2003
, “
A CAD/CAM Representation Model Applied to Tolerance Transfer Methods
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
14
22
.
74.
Desrochers
,
A.
, and
Verheul
,
S.
,
1999
, “
A Three Dimensional Tolerance Transfer Methodology
,”
Global Consistency of Tolerances
,
Springer
,
The Netherlands
, pp.
83
92
.
75.
Cooke
,
A. L.
, and
Moylan
,
S. P.
,
2011
, “
Process Intermittent Measurement for Powder-Bed Based Additive Manufacturing
,”
22nd International SFF Symposium: An Additive Manufacturing Conference
, NIST, Austin, TX, pp.
8
10
.
76.
Shakarji
,
C. M.
,
1998
, “
Least-Squares Fitting Algorithms of the NIST Algorithm Testing System
,”
J. Res. Natl. Inst. Stand. Technol.
,
103
(
6
), pp.
633
641
.
77.
Shakarji
,
C. M.
, and
Clement
,
A.
,
2004
, “
Reference Algorithms for Chebyshev and One-Sided Data Fitting for Coordinate Metrology
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
439
442
.
78.
Kempen
,
K.
,
Welkenhuyzen
,
F.
,
Qian
,
J.
, and
Kruth
,
J.-P.
,
2014
, “
Dimensional Accuracy of Internal Channels in SLM Produced Parts
,” 2014 ASPE Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, Berkeley, CA, Apr. 13–16.
79.
Welkenhuyzen
,
F.
,
Boeckmans
,
B.
,
Kiekens
,
K.
,
Tan
,
Y.
,
Dewulf
,
W.
, and
Kruth
,
J. P.
,
2013
, “
Accuracy Study of a 450kV CT System With a Calibrated Test Object
,”
11th International Symposium on Measurement and Quality Control
, Cracow-Kielce, Poland, Sept. 11–13.
80.
Tramel
,
T. L.
,
Norwood
,
J. K.
, and
Bilheux
,
H.
,
2014
, “
Neutron Imaging for Selective Laser Melting Inconel Hardware With Internal Passages
,” Report No. M14-3710.
81.
Rometsch
,
P.
,
Pelliccia
,
D.
,
Garbe
,
U.
,
Tomus
,
D.
,
Giet
,
S.
, and
Wu
,
X.
,
2015
, “
Non-Destructive Testing of Components Made by Selective Laser Melting
,” 26th Advanced Aerospace Materials and Processes (AEROMAT 2015) Conference and Exposition, May 11–14, Long Beach, CA.
82.
ASME Y14
, “
Y14 Engineering Drawings and Related Documents Committee
,” Y14 April 2015 Meeting Schedule, Last accessed Dec. 21, 2014, https://cstools.asme.org/csconnect/FileUpload.cfm?View=yes&ID=37060
You do not currently have access to this content.