In the field of additive manufacturing (AM) processes, there is a significant lack of scientific data on the performance of open-source 3D printers in relation to process parameter values. The purpose of this paper is to assess the impact of the main process parameters on the accuracy of a set of typical geometric features, as obtained with an open-source 3D printer, the RepRap Prusa-Mendel I2. For this purpose, a benchmarking part was set up, composed of elementary shapes, representing a series of different geometric features. By means of a DoE approach, it was possible to assess the effects of two process parameters—layer thickness (Lt) and flow rate (Fr)—on five geometric features: cube, sphere, cylinder, cone, and angled surface. A high resolution Laser Scanner was used to evaluate the variation between the acquired geometric feature and the corresponding 3D computer-aided design (CAD) nominal model. On the basis of experimental results, it was possible to analyze and discuss the main effects of the above-mentioned process parameters on each geometric feature. These results can help RepRap users in the correct selection of process parameters with the aim of improving the quality of prototypes.

References

References
1.
Jones
,
R.
,
Haufe
,
P.
,
Sells
,
E.
,
Iravani
,
P.
,
Olliver
,
V.
,
Palmer
,
C.
, and
Bowyer
,
A.
,
2011
, “
RepRap-The Replicating Rapid Prototyper
,”
Robotica
,
29
(
1
), pp.
177
191
.
2.
ISO/ASTM 52915
,
2013
,
Standard Specification for Additive Manufacturing File Format (AMF) Version 1.1
.
3.
ISO/ASTM 52921
,
2013
,
Standard Terminology for Additive Manufacturing-Coordinate Systems and Test Methodologies
.
4.
ISO 17296-1
,
2014
,
Additive Manufacturing—General—Part 1: Terminology
.
5.
ISO 17296-4
,
2014
,
Additive Manufacturing—General Principles—Part 4: Overview of Data Processing Technologies, ASTM Fact Sheet
.
6.
ISO 17296-3
,
2014
,
Additive Manufacturing—General Principles—Part 3: Main Characteristics and Corresponding Test Methods
.
7.
ISO 17296-2
,
2015
,
Additive Manufacturing—General Principles—Part 2: Overview of Process Categories and Feedstock
.
8.
Kruth
,
J. P.
,
1991
, “
Material Incress Manufacturing by Rapid Prototyping Techniques
,”
CIRP Ann.
,
40
(
2
), pp.
1603
1615
.
9.
Lart
,
G.
,
1992
, “
Comparison of Rapid Prototyping Systems
,”
First European Conference on Rapid Prototyping
, University of Nottingham, Nottingham, UK, pp.
243
254
.
10.
Ippolito
,
N. R.
,
Iuliano
,
L.
, and
de Filippi
,
A.
,
1994
, “
A New User Part for Performance Evaluation of Rapid Prototyping Systems
,”
Third European Conference on Rapid Prototyping and Manufacturing
,
University of Nottingham
,
Nottingham, UK
, pp.
327
339
.
11.
Juster
,
N. P.
, and
Childs
,
T. H. C.
,
1994
, “
Linear and Geometric Accuracies From Layer Manufacturing
,”
CIRP Ann.
,
43
(
1
), pp.
163
166
.
12.
Juster
,
N. P.
, and
Childs
,
T. H. C.
,
1994
, “
A Comparison of Rapid Prototyping Processes
,”
Third European Conference on Rapid Prototyping and Manufacturing
,
University of Nottingham
,
Nottingham, UK
, pp.
35
52
.
13.
Shellabear
,
M.
,
1999
, “
Benchmarking Study of Accuracy and Surface Quality in RP Models
,” RAPTEC, Task 4.2, Report No. 2.
14.
Mahesh
,
M.
,
Wong
,
Y. S.
,
Fuh
,
Y. H.
, and
Loh
,
H. T.
,
2004
, “
Benchmarking for Comparative Evaluation of RP Systems and Processes
,”
Rapid Prototyping J.
,
10
(
2
), pp.
123
135
.
15.
Sercombe
,
T. B.
, and
Hopkinson
,
N.
,
2006
, “
Process Shrinkage and Accuracy During Indirect Laser Sintering of Aluminum
,”
Adv. Eng. Mater.
,
8
(
4
), pp.
260
264
.
16.
Fahad
,
M.
, and
Hopkinson
,
N.
,
2012
, “
A New Benchmarking Part for Evaluating the Accuracy and Repeatability of Additive Manufacturing (AM) Processes
,”
2nd International Conference on Mechanical, Production and Automobile Engineering (ICMPAE 2012)
,
Singapore
, April 28–29, pp. 234–238.
17.
Lanzotti
,
A.
,
Martorelli
,
M.
, and
Staiano
,
G.
,
2015
, “
Understanding Process Parameter Effects of RepRap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011017
.
18.
Shah
,
J.
, and
Mantyla
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications
,
Wiley-Inter-Science
, New York.
19.
Chen
,
Y. M.
,
Wen
,
C.-C.
, and
Ho
,
C.
,
2003
, “
Extraction of Geometric Characteristics for Manufacturability Assessment
,”
Rob. Comput. Integr. Manuf.
,
19
(
4
), pp.
371
385
.
20.
Gayretli
,
A.
, and
Abdalla
,
H. S.
,
1999
, “
A Feature-Based Prototype System for the Evaluation and Optimisation of Manufacturing Processes
,”
Comput. Ind. Eng.
,
37
(
1–2
), pp.
481
484
.
21.
Ip
,
C. Y.
, and
Regli
,
W. C.
,
2006
, “
A 3D Object Classifier for Discriminating Manufacturing Processes
,”
Comput. Graph.
,
30
(
6
), pp.
903
916
.
22.
Zhang
,
Y.
, and
Bernard
,
A.
,
2014
, “
Using AM Feature and Multi-Attribute Decision Making to Orientate Part in Additive Manufacturing
,”
High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping
,
P. J.
da Silva Bártolo
,
A. C.
Soares de Lemos
,
A. M. H.
Pereira
,
A. J.
dos Santos Mateus
,
C.
Ramos
,
C.
dos Santos
,
D.
Oliveira
,
E. Pinto
,
F.
Craveiro
,
H. M.
Coelho da Rocha Terreiro Galha Bártolo
,
H.
de Amorim Almeia
,
I.
Sousa
,
J. M.
Matias
,
L. Durão
,
M. Gaspar
,
N. M. F.
Alves
,
P. Carreira
,
T.
Ferreira
, and
T. Marques
, eds.,
Taylor & Francis Group
,
London
.
23.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
CAD Appl.
,
4
(
5
), pp.
585
594
.
24.
Qian
,
X.
, and
Dutta
,
D.
,
2001
, “
Feature Based Fabrication in Layered Manufacturing
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
337
345
.
25.
Moroni
,
G.
,
Syam
,
W. P.
, and
Petrò
,
S.
,
2014
, “
Towards Early Estimation of Part Accuracy in Additive Manufacturing
,”
Procedia CIRP, 24th CIRP Design Conference
, Vol.
21
, pp.
300
305
.
26.
Moroni
,
G.
,
Syam
,
W. P.
, and
Petrò
,
S.
,
2015
, “
Functionality-Based Part Orientation for Additive Manufacturing
,”
Procedia CIRP, 25th CIRP Design Conference
, pp. 1–7.
27.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
28.
Pottmann
,
H.
,
Leopoldseder
,
S.
, and
Hofer
,
M.
,
2002
, “
Simultaneous Registration of Multiple Views of a 3D Object
,”
PCV’02, Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
, Vol.
XXXIV
, Part 3A, Commission III, pp. 265–270.
29.
Campbell
,
R. I.
,
Martorelli
,
M.
, and
Lee
,
H. S.
,
2002
, “
Surface Roughness Visualisation for Rapid Prototyping Models
,”
Comput. Aided Des.
,
34
(
10
), pp.
717
725
.
You do not currently have access to this content.