Product markets can be modeled as complex systems that account for a diverse set of stakeholders and interactions. Decisions by all of the stakeholders in these systems can affect the design of new products, not only from design teams but also from consumers, producers, and policymakers. Studies of market systems have shown how producers can make profit-optimal decisions on product design and pricing, and how those decisions influence a number of different factors including the quality, environmental impact, production costs, and ultimately consumer demand for the product. This study presents and demonstrates the use of a framework for modeling the ways that policies and consumer demand influence optimal product design and, in particular, product quality and environmental sustainability. Employing this model for the tolerance and material design decisions for a mobile phone case shows how different environmental impact scales, taxation levels, and information available to consumers will influence producer profits and overall environmental impacts. This demonstrates how different policies can be evaluated for their impacts on economic success for producers and reduced environmental impacts for society, and a “win–win” scenario is found for the mobile phone case.

References

References
1.
Train
,
K. E.
,
2009
,
Discrete Choice Methods With Simulation
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
2.
Louviere
,
J. J.
,
Hensher
,
D. A.
, and
Swait
,
J. D.
,
2000
,
Stated Choice Methods: Analysis and Applications
,
Cambridge University Press
,
Cambridge, UK
.
3.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2015
, “
The Impact of Sustainability on Consumer Preference Judgements of Product Attributes
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081401
.
4.
Michalek
,
J. J.
,
2008
, “
Design for Market Systems: Integrating Social, Economic, and Physical Sciences to Engineer Product Success
,”
Mech. Eng.-CIME
,
130
(
11
), pp.
32
36
.
5.
MacDonald
,
E.
,
Whitefoot
,
K.
,
Allison
,
J. T.
,
Papalambros
,
P. Y.
, and
Gonzalez
,
R.
,
2010
, “
An Investigation of Sustainability, Preference, and Profitability in Design Optimization
,”
ASME
Paper No. DETC2010-29055.
6.
Fischer
,
C.
, and
Newell
,
R. G.
,
2008
, “
Environmental and Technology Policies for Climate Mitigation
,”
J. Environ. Econ. Manage.
,
55
(
2
), pp.
142
162
.
7.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
Schryver
,
A. D.
,
Struijs
,
J.
, and
van Zelm
,
R.
,
2008
, “
ReCiPe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level
,” 1st ed., Report I: Characterization.
8.
Bare
,
J. C.
,
2002
, “
Developing a Consistent Decision-Making Framework by Using the U.S. EPA's TRACI
,”
American Institute of Chemical Engineers Symposium
(
AIChE
), Indianapolis, IN, Nov. 3–8.
9.
Steen
,
B.
,
1999
, “
A Systematic Approach to Environmental Priority Strategies in Product Development (EPS). Version 2000—General System Characteristics
,” Chalmers University of Technology, Technical Environmental Planning, Technical Report No. 1999:5.
10.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2009
, “
Optimal Product Design Under Price Competition
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071003
.
11.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
,
2004
, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1062
1070
.
12.
Shiau
,
C.-S. N.
,
Michalek
,
J. J.
, and
Hendrickson
,
C. T.
,
2009
, “
A Structural Analysis of Vehicle Design Responses to Corporate Average Fuel Economy Policy
,”
Transp. Res. Part A
,
43
(
9–10
), pp.
814
828
.
13.
Whitefoot
,
K. S.
,
Grimes-Casey
,
H. G.
,
Girata
,
C. E.
,
Morrow
,
W. R.
,
Winebrake
,
J. J.
,
Keoleian
,
G. A.
, and
Skerlos
,
S. J.
,
2011
, “
Consequential Life Cycle Assessment With Market-Driven Design
,”
J. Ind. Ecol.
,
15
(
5
), pp.
726
742
.
14.
Zhao
,
Y.
,
Pandey
,
V.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Varying Lifecycle Lengths Within a Product Take-Back Portfolio
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091012
.
15.
Wilde
,
G. J. S.
,
1982
, “
The Theory of Risk Homeostasis: Implications for Safety and Health
,”
Risk Anal.
,
2
(
4
), pp.
209
225
.
16.
Greening
,
L. A.
,
Greene
,
D. L.
, and
Difiglio
,
C.
,
2000
, “
Energy Efficiency and Consumption—The Rebound Effect—A Survey
,”
Energy Policy
,
28
(
6–7
), pp.
389
401
.
17.
Chase
,
K. W.
, and
Parkinson
,
A. R.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
38
.
18.
Taguchi
,
G.
,
Elsayed
,
E. A.
, and
Hsiang
,
T. C.
,
1988
,
Quality Engineering in Production Systems
,
McGraw-Hill
,
Columbus, OH
.
19.
Ostwald
,
P. F.
, and
Huang
,
J.
,
1977
, “
A Method for Optimal Tolerance Selection
,”
J. Eng. Ind.
,
99
(
3
), pp.
558
565
.
20.
Söderberg
,
R.
,
1993
, “
Tolerance Allocation Considering Customer and Manufacturer Objectives
,”
Advances in Design Automation
(DE Series),
B. J.
Gilmore
, ed.,
American Society of Mechanical Engineers
,
Albuquerque, NM
, pp.
149
157
.
21.
Lööf
,
J.
,
Hermansson
,
T.
, and
Söderberg
,
R.
,
2007
, “
An Efficient Solution to the Discrete Least-Cost Tolerance Allocation Problem With General Loss Functions
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
J. K.
Davidson
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
115
124
.
22.
Bjørke
,
Ø.
,
1989
,
Computer-Aided Tolerancing
,
2nd ed.
,
ASME Press
,
New York
.
23.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
24.
Shah
,
J. J.
,
Ameta
,
G.
,
Shen
,
Z.
, and
Davidson
,
J.
,
2007
, “
Navigating the Tolerance Analysis Maze
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
705
718
.
25.
Crilly
,
N.
,
Moultrie
,
J.
, and
Clarkson
,
P. J.
,
2004
, “
Seeing Things: Consumer Response to the Visual Domain in Product Design
,”
Des. Stud.
,
25
(
6
), pp.
547
577
.
26.
Forslund
,
K.
,
Karlsson
,
M.
, and
Söderberg
,
R.
,
2013
, “
Impacts of Geometrical Manufacturing Quality on the Visual Product Experience
,”
Int. J. Des.
,
7
(
1
), pp.
69
84
.
27.
Wickman
,
C.
, and
Söderberg
,
R.
,
2007
, “
Perception of Gap and Flush in Virtual Environments
,”
J. Eng. Des.
,
18
(
2
), pp.
175
193
.
28.
Hoffenson
,
S.
,
Dagman
,
A.
, and
Söderberg
,
R.
,
2015
, “
Visual Quality and Sustainability Considerations in Tolerance Optimization: A Market-Based Approach
,”
Int. J. Prod. Econ.
,
168
, pp.
167
180
.
29.
Institute for Environment and Sustainability, European Commission Joint Research Centre
,
2010
, ILCD Handbook: Analysis of Existing Environmental Impact Assessment Methodologies for Use in Life Cycle Assessment, Ispra (VA) Italy, http://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Background-analysis-online-12March2010.pdf
30.
Dahlman
,
C. J.
,
1979
, “
The Problem of Externality
,”
J. Law Econ.
,
22
(
1
), pp.
141
162
.
31.
Aldy
,
J. E.
,
Ley
,
E.
, and
Parry
,
I.
,
2008
, “
A Tax-Based Approach to Slowing Global Climate Change
,”
Natl. Tax J.
,
61
(
3
), pp.
493
517
.
32.
Smith
,
S.
,
2008
, “
Environmentally Related Taxes and Tradable Permit Systems in Practice
,” Organisation for Economic Co-operation and Development, Paris, http://www.oecd.org/officialdocuments/displaydocument/?cote=COM/ENV/EPOC/CTPA/CFA(2007)31/FINAL&doclanguage=en
33.
NREL
,
2013
, “
U.S. Life Cycle Inventory Database
,” National Renewable Energy Laboratory, Golden, CO, www.nrel.gov/lci/
34.
Ashby
,
M. F.
,
Miller
,
A.
,
Rutter
,
F.
,
Seymour
,
C.
, and
Wegst
,
U. G. K.
,
2009
, “
The CES Eco-Selector—Background Reading
,” Granta Design, Cambridge, UK.
35.
Ciroth
,
A.
,
2013
, openLCA User Guide: For the 1.4 Beta Version.
36.
Sawtooth Software
,
2008
, “
The CBC System for Choice-Based Conjoint Analysis
,” Sawtooth Software, Sequim, WA. https://sawtoothsoftware.com/download/techpap/cbctech.pdf
You do not currently have access to this content.