Carriage of heavy loads is common in developing countries and can impart large repetitive forces on the body that could lead to musculoskeletal fatigue and injury. Compliant bamboo poles have been used to carry heavy loads in Asia for generations and could be a low-cost, sustainable, and culturally acceptable way to minimize the forces acting on the body during load carriage. Experimental evidence of running with a 15 kg load suspended from a pair of compliant poly(vinyl chloride), or PVC, poles shows that the poles act as a vibration-isolating suspension, which can reduce the peak forces on the body during locomotion. However, it is currently not well-understood how to design and optimize poles for load carrying such that the peak forces on the body are minimized during carrying. Further, current users of bamboo poles do not have a reliable way to measure forces on the body and so cannot empirically optimize their poles for force reduction. Our objective is to determine the geometric and material design parameters that optimize bamboo poles for load carriage and to develop recommendations that could make it easier for load carriers to fabricate well-suited poles. Our approach is to synthesize a predictive model of walking and running from the field of biomechanics, which can predict the peak forces on the body as a function of pole stiffness, with a bending beam model of the bamboo pole that relates pole geometry and material to the effective pole stiffness. We first check our model's ability to predict the experimental results from a well-established study with PVC poles. We then extend the predictive design study to include a wider range of stiffness values and pole geometries that may be more effective and realistic for practical load carrying situations. Based on stiffness, deflection, strength, and pole mass design constraints, we specify an appropriate range of dimensions for selecting bamboo poles to carry a 15 kg load. The design methodology presented could simplify the selection and design of bamboo carrying poles in order to reduce the likelihood of musculoskeletal injury.

References

References
1.
Kram
,
R.
,
1991
, “
Carrying Loads With Springy Poles
,”
J. Appl. Physiol.
,
71
(
3
), pp.
1119
1122
.
2.
Balogun
,
J. A.
,
1986
, “
Ergonomic Comparison of Three Modes of Load Carriage
,”
Int. Arch. Occup. Environ. Health
,
58
(
1
), pp.
35
46
.10.1007/BF00378538
3.
Datta
,
S.
, and
Ramanathan
,
N.
,
1971
, “
Ergonomic Comparison of Seven Modes of Carrying Loads on the Horizontal Plane
,”
Ergonomics
,
14
(
2
), pp.
269
278
.10.1080/00140137108931244
4.
Campbell
,
J. K.
,
1990
,
Dibble Sticks, Donkeys, and Diesels: Machines in Crop Production
,
IRRI
,
Manila, Philippines
.
5.
Heglund
,
N. C.
,
Willems
,
P. A.
,
Penta
,
M.
, and
Cavagna
,
G. A.
,
1995
, “
Energy-Saving Gait Mechanics With Head-Supported Loads
,”
Nature
,
375
(
6526
), pp.
52
54
.10.1038/375052a0
6.
Kenntner
,
G.
,
1969
, “
Customs and Efficiency in Carrying Loads of the Inhabitants of the Southern Himalayas. A Contribution to Biogeographic Research
,”
Z. Morphol. Anthropol.
,
61
(
2
), p.
125
.
7.
Rome
,
L.
,
Flynn
,
L.
, and
Yoo
,
T.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.10.1038/4441023a
8.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.10.1016/j.jbiomech.2008.10.012
9.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2005
, “
Dynamic Analysis of Load Carriage Biomechanics During Level Walking
,”
J. Biomech.
,
38
(
4
), pp.
853
863
.10.1016/j.jbiomech.2004.04.030
10.
Hoover
,
J.
, and
Meguid
,
S.
,
2011
, “
Performance Assessment of the Suspended-Load Backpack
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
111
121
.10.1007/s10999-011-9153-7
11.
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energy Efficiency of Legged Robot Locomotion With Elastically Suspended Loads
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
321
330
.10.1109/TRO.2012.2235698
12.
Xingye
,
D.
,
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energetic and Dynamic Analysis of Multi-Frequency Legged Robot Locomotion With an Elastically Suspended Load
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021006
.10.1115/1.4024778
13.
Rome
,
L.
,
Flynn
,
L.
,
Goldman
,
E.
, and
Yoo
,
T.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.10.1126/science.1111063
14.
Xu
,
X.
,
2009
, “
An Investigation on the Interactivity Between Suspended-Load Backpack and Human Gait
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
15.
Ackerman
,
J.
, and
Seipel
,
J.
,
2011
, “
Coupled-Oscillator Model of Locomotion Stability With Elastically-Suspended Loads
,”
ASME
Paper No. DETC2011-48828.10.1115/DETC2011-48828
16.
Kinoshita
,
H.
,
1985
, “
Effects of Different Loads and Carrying Systems on Selected Biomechanical Parameters Describing Walking Gait
,”
Ergonomics
,
28
(
9
), pp.
1347
1362
.10.1080/00140138508963251
17.
Cavagna
,
G.
,
Heglund
,
N.
, and
Taylor
,
C.
,
1977
, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
233
(
5
), pp.
243
261
.
18.
Blickhan
,
R.
,
1989
, “
The Spring-Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.10.1016/0021-9290(89)90224-8
19.
Blickhan
,
R.
, and
Full
,
R.
,
1993
, “
Similarity in Multi-Legged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol. A
,
173
(
5
), pp.
509
517
.10.1007/BF00197760
20.
Shen
,
Z.
, and
Seipel
,
J.
,
2012
, “
A Fundamental Mechanism of Legged Locomotion With Hip Torque and Leg Damping
,”
Bioinspiration Biomimetics
,
7
(
4
), p.
046010
.10.1088/1748-3182/7/4/046010
21.
Potwar
,
K.
,
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Slip Model of Human Running With an Elastically-Suspended Load
,”
ASME
Paper No. DETC2013-13612. 10.1115/DETC2013-13612
22.
Farley
,
C. T.
, and
Gonzalez
,
O.
,
1996
, “
Leg Stiffness and Stride Frequency in Human Running
,”
J. Biomech.
,
29
(
2
), pp.
181
186
.10.1016/0021-9290(95)00029-1
23.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. B: Biol. Sci.
,
273
(
1603
), pp.
2861
2867
.10.1098/rspb.2006.3637
24.
Zhang
,
L.
,
Xu
,
D.
,
Makhsous
,
M.
, and
Lin
,
F.
,
2000
, “
Stiffness and Viscous Damping of the Human Leg
,” Proc. of the 24th Ann. Meeting of the Am. Soc. of Biomech.,
Chicago, IL
.
25.
Marquez
,
M.
,
Melton Iii
,
L.
,
Muhs
,
J.
,
Crowson
,
C.
,
Tosomeen
,
A.
,
O'connor
,
M.
,
O'fallon
,
W.
, and
Riggs
,
B.
,
2001
, “
Bone Density in an Immigrant Population From Southeast Asia
,”
Osteoporosis Int.
,
12
(
7
), pp.
595
604
.10.1007/s001980170083
26.
Davis
,
C.
,
Kukureka
,
S.
,
Hubbard
,
M.
,
Mehta
,
R.
, and
Pallis
,
J.
,
2004
, “
Effect of Materials and Manufacturing on the Bending Stiffness of Vaulting Poles
,”
The Engineering of Sport
,
Springer
,
Berlin, Germany
, pp.
245
252
.
27.
Lo
,
T. Y.
,
Cui
,
H.
, and
Leung
,
H.
,
2004
, “
The Effect of Fiber Density on Strength Capacity of Bamboo
,”
Mater. Lett.
,
58
(
21
), pp.
2595
2598
.10.1016/j.matlet.2004.03.029
28.
Ben-Zhi
,
Z.
,
Mao-Yi
,
F.
,
Jin-Zhong
,
X.
,
Xiao-Sheng
,
Y.
, and
Zheng-Cai
,
L.
,
2005
, “
Ecological Functions of Bamboo Forest: Research and Application
,”
J. For. Res.
,
16
(
2
), pp.
143
147
.10.1007/BF02857909
29.
Lakkad
,
S.
, and
Patel
,
J.
,
1981
, “
Mechanical Properties of Bamboo, a Natural Composite
,”
Fibre Sci. Technol.
,
14
(
4
), pp.
319
322
.10.1016/0015-0568(81)90023-3
30.
Soares
,
A. K.
,
Covas
,
D. I.
, and
Reis
,
L. F.
,
2008
, “
Analysis of PVC Pipe-Wall Viscoelasticity During Water Hammer
,”
J. Hydraul. Eng.
,
134
(
9
), pp.
1389
1394
.10.1061/(ASCE)0733-9429(2008)134:9(1389)
31.
Ugural
,
A. C.
, and
Fenster
,
S. K.
,
2003
,
Advanced Strength and Applied Elasticity
,
Pearson Education
, Upper Saddle River, NJ.
32.
Shigley
,
J. E.
,
Mischke
,
C. R.
,
Budynas
,
R. G.
,
Liu
,
X.
, and
Gao
,
Z.
,
1989
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
33.
Elftman
,
H.
,
1939
, “
The Function of the Arms in Walking
,”
Hum. Biol.
,
11
(
4
), pp.
529
535
.10.2307/41447428
34.
Hinrichs
,
R. N.
,
1990
, “
Whole Body Movement: Coordination of Arms and Legs in Walking and Running
,”
Multiple Muscle Systems
,
Springer
,
New York
.
35.
Knapik
,
J.
,
Harman
,
E.
, and
Reynolds
,
K.
,
1996
, “
Load Carriage Using Packs: A Review of Physiological, Biomechanical and Medical Aspects
,”
Appl. Ergon.
,
27
(
3
), pp.
207
216
.10.1016/0003-6870(96)00013-0
You do not currently have access to this content.