Toward a multi-objective optimization robust problem, the variations in design variables (DVs) and design environment parameters (DEPs) include the small variations and the large variations. The former have small effect on the performance functions and/or the constraints, and the latter refer to the ones that have large effect on the performance functions and/or the constraints. The robustness of performance functions is discussed in this paper. A postoptimality sensitivity analysis technique for multi-objective robust optimization problems (MOROPs) is discussed, and two robustness indices (RIs) are introduced. The first one considers the robustness of the performance functions to small variations in the DVs and the DEPs. The second RI characterizes the robustness of the performance functions to large variations in the DEPs. It is based on the ability of a solution to maintain a good Pareto ranking for different DEPs due to large variations. The robustness of the solutions is treated as vectors in the robustness function space (RF-Space), which is defined by the two proposed RIs. As a result, the designer can compare the robustness of all Pareto optimal solutions and make a decision. Finally, two illustrative examples are given to highlight the contributions of this paper. The first example is about a numerical problem, whereas the second problem deals with the multi-objective robust optimization design of a floating wind turbine.

References

References
1.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
86
94
.10.1115/1.1825047
2.
Beyer
,
H.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization-A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.10.1016/j.cma.2007.03.003
3.
Deb
,
K.
, and
Gupta
,
H.
,
2005
, “
Searching for Robust Pareto-Optimal Solutions in Multi-Objective Optimization
,”
Evolutionary Multi-Criterion Optimization
,
C.
Coello Coello
,
A.
Hernández Aguirre
, and
E.
Zitzler
, eds.,
Springer
Berlin, Heidelberg
, Germany, pp.
150
164
.
4.
Deb
,
K.
, and
Gupta
,
H.
,
2006
, “
Introducing Robustness in Multi-Objective Optimization
,”
Evol. Comput.
,
14
(
4
), pp.
463
494
.10.1162/evco.2006.14.4.463
5.
Saha
,
A.
, and
Ray
,
T.
,
2011
, “
Practical Robust Design Optimization Using Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101012
.10.1115/1.4004807
6.
Gaspar-Cunha
,
A.
, and
Covas
,
J.
,
2006
, “
Robustness Using Multi-Objective Evolutionary Algorithms
,”
Applications of Soft Computing
,
A.
Tiwari
,
R.
Roy
,
J.
Knowles
,
E.
Avineri
, and
K.
Dahal
, eds.,
Springer
Berlin/Heidelberg
, pp.
353
362
.
7.
Gaspar-Cunha
,
A.
, and
Covas
,
J.
,
2008
, “
Robustness in Multi-Objective Optimization Using Evolutionary Algorithms
,”
Comput. Optim. Appl.
,
39
(
1
), pp.
75
96
.10.1007/s10589-007-9053-9
8.
Barrico
,
C.
, and
Antunes
,
C.
,
2006
, “
A New Approach to Robustness Analysis in Multi-Objective Optimization
,”
7th International Conference on Multi-Objective Programming and Goal Programming (MOPGP 2006)
,
Loire Valley
,
City of Tours, France
, June 12–14, pp.
12
15
.
9.
Barrico
,
C.
, and
Antunes
,
C. H.
,
2006
, “
Robustness Analysis in Multi-Obejective Optimization Using a Degree of Robustness Concept
,”
IEEE
Congress on Evolutionary Computation
,
Vancouver
,
BC, Canada
, July 16–21. pp.
1887
1892
.10.1109/CEC.2006.1688537
10.
Giassi
,
A.
,
Bennis
,
F.
, and
Maisonneuve
,
J.-J.
,
2004
, “
Multidisciplinary Design Optimisation and Robust Design Approaches Applied to Concurrent Design
,”
Struct. Multidiscip. Optim.
,
28
(
5
), pp.
356
371
.10.1007/s00158-004-0417-9
11.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Comparison of Robustness Indices and Introduction of a Tolerance Synthesis Method for Mechanisms
,”
Canadian Congress of Applied Mechanics
, Montreal, QC, May 30–June 2, pp.
3
4
.
12.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
, and
Augusto
,
O. B.
,
2012
, “
Toward the Use of Pareto Performance Solutions and Pareto Robustness Solutions for Multi-Objective Robust Optimization Problems
,”
ASME
Paper No. ESDA2012–82099.10.1115/ESDA2012-82099
13.
Augusto
,
O.
,
Bennis
,
F.
, and
Caro
,
S.
,
2012
, “
Multiobjective Engineering Design Optimization Problems: A Sensitivity Analysis Approach
,”
Pesqui. Operacional
,
32
(
3
), pp.
575
596
.
14.
Gunawan
,
S.
, and
Azarm
,
S.
,
2005
, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
,
29
(
1
), Aug., pp.
50
60
.10.1007/s00158-004-0450-8
15.
Li
,
M.
,
Azarm
,
S.
, and
Aute
,
V.
,
2005
, “
A Multi-Objective Genetic Algorithm for Robust Design Optimization
,”
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation
,
Washington DC
, June 25–26, pp.
25
29
.10.1145/1068009.1068140
16.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.10.1115/1.2202884
17.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al-Qasas
,
N.
,
2009
, “
Improving Multi-Objective Robust Optimization Under Interval Uncertainty Using Worst Possible Point Constraint Cuts
,”
ASME
Paper No. DETC2009-87312.10.1115/DETC2009-87312
18.
Hung
,
T.
, and
Chan
,
K.
,
2013
, “
Multi-Objective Design and Tolerance Allocation for Single-And Multi-Level Systems
,”
J. Intell. Manuf.
,
24
(
3
), pp.
559
573
.10.1007/s10845-011-0608-3
19.
Hung
,
T.
, and
Chan
,
K.
,
2013
, “
Uncertainty Quantifications of Pareto Optima in Multiobjective Problems
,”
J. Intell. Manuf.
,
24
(
2
), pp.
385
395
.10.1007/s10845-011-0602-9
20.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des
,
128
(
4
), pp.
945
958
.10.1115/1.2204974
21.
Hassan
,
G.
, and
Clack
,
C.
,
2008
, “
Multiobjective Robustness for Portfolio Optimization in Volatile Environments
,”
GECCO’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation
,
ACM Press
,
Atlanta, GA
, July 12–16, pp.
1507
1514
.10.1145/1389095.1389387
22.
Hassan
,
G.
, and
Clack
,
C. D.
,
2009
, “
Robustness of Multiple Objective GP Stock-Picking in Unstable Financial Markets
,”
GECCO’09: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
,
Montreal
,
QC
, Canada, July 8–12, pp.
1513
1520
.10.1145/1569901.1570104
23.
Lu
,
X.
, and
Li
,
H.-X.
,
2009
, “
Perturbation Theory Based Robust Design Under Model Uncertainty
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111006
.10.1115/1.3213529
24.
Moshaiov
,
A.
, and
Avigad
,
G.
,
2006
, “
Concept-Based IEC for Multi-Objective Search With Robustness to Human Preference Uncertainty
,”
IEEE
International Conference on Evolutionary Computation
,
Vancouver
,
BC
, July 16–21, pp.
1893
1900
.10.1109/CEC.2006.1688538
25.
Avigad
,
G.
,
Eisenstadt
,
E.
, and
Schuetze
,
O.
,
2011
, “
Handling Changes of Performance Requirements in Multi-Objective Problems
,”
J. Eng. Des.
,
23
(8), pp. 597–617.10.1080/09544828.2011.630656
26.
Bui
,
L. T.
,
Abbass
,
H. A.
, and
Barlow
,
M.
,
2012
, “
Robustness Against the Decision-Maker's Attitude to Risk in Problems With Conflicting Objectives
,”
IEEE Trans. Evol. Comput.
,
16
(
99
), pp.
1
19
.10.1109/TEVC.2010.2051443
27.
Cruz
,
C.
,
González
,
J. R.
, and
Pelta
,
D. A.
,
2011
, “
Optimization in Dynamic Environments: A Survey on Problems, Methods and Measures
,”
Soft Comput.
,
15
(
7
), pp.
1427
1448
.10.1007/s00500-010-0681-0
28.
Farina
,
M.
,
Deb
,
K.
, and
Amato
,
P.
,
2003
, “
Dynamic Multiobjective Optimization Problems: Test Cases, Approximations, and Applications
,”
Evolutionary Multi-Criterion Optimization
(
Lecture Notes in Computer Science
), Vol.
2632
,
C. M.
Fonseca
,
P. J.
Fleming
,
E.
Zitzler
,
L.
Thiele
, and
K.
Deb
, eds.,
Springer
,
Heidelberg, Berlin
, Germany, pp.
311
326
.10.1109/TEVC.2004.831456
29.
Deb
,
K.
,
N.
,
U. B. R.
, and
Karthik
,
S.
,
2007
, “
Dynamic Multi-Objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-Thermal Power Scheduling
,”
Evolutionary Multi-Criterion Optimization
, Vol.
4403
,
S.
Obayashi
,
K.
Deb
,
C.
Poloni
,
T.
Hiroyasu
, and
T.
Murata
, eds.,
Springer
,
Heidelberg, Berlin
, Germany, pp.
803
817
.10.1007/978-3-540-70928-2_60
30.
Chen
,
R.
, and
Zeng
,
W.
,
2011
, “
Multi-Objective Optimization in Dynamic Environment: A Review
,”
6th International Conference on Computer Science & Education (ICCSE)
,
Singapore
, Aug. 3–5, pp.
78
82
10.1109/ICCSE.2011.6028589.
31.
Nazari
,
V.
, and
Notash
,
L.
,
2013
, “
Workspace of Wire-Actuated Parallel Manipulators and Variations in Design Parameters
,”
Trans. Can. Soc. Mech. Eng.
,
37
(
2
), pp.
215
229
.
32.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
, and
Campolongo
,
F.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley-Interscience
, Chichester, UK.
33.
Tomlin
,
A.
, and
Ziehn
,
T.
,
2011
, “
The Use of Global Sensitivity Methods for the Analysis, Evaluation and Improvement of Complex Modelling Systems
,”
Coping With Complexity: Model Reduction and Data Analysis
, Vol.
75
,
Springer
,
Heidelberg, Berlin
, Germany, pp.
9
36
.10.1007/978-3-642-14941-2_2
34.
Tong
,
C.
, and
Graziani
,
F.
,
2008
, “
A Practical Global Sensitivity Analysis Methodology for Multi-Physics Applications
,”
Computational Methods in Transport: Verification and Validation
, Vol.
62
,
Springer
, Berlin, Heidelberg, Germany, pp.
277
299
.10.1007/978-3-642-14941-2_2
35.
Augustin
,
J.
,
2011
, “
Global Sensitivity Analysis Applied to Food Safety Risk Assessment
,”
Electron. J. Appl. Stat. Anal.
,
4
(
2
), pp.
255
264
.10.1285/i20705948v4n2p255
36.
Gunawan
,
S.
, and
Azarm
,
S.
,
2004
, “
Non-Gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
395
402
.10.1115/1.1711821
37.
Lu
,
X.
,
Li
,
H.-X.
, and
Chen
,
C. L. P.
,
2010
, “
Variable Sensitivity-Based Deterministic Robust Design for Nonlinear System
,”
ASME J. Mech. Des.
,
132
(
6
), p.
064502
.10.1115/1.4001669
38.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
John Wiley and Sons
,
NY
.
39.
Li
,
X.
, and
Wong
,
H.-S.
,
2009
, “
Logic Optimality for Multi-Objective Optimization
,”
Appl. Math. Comput.
,
215
(
8
), pp.
3045
3056
.10.1016/j.amc.2009.09.053
40.
Coello Coello
,
C.
,
2006
. “
Evolutionary Multi-Objective Optimization: A Historical View of the Field
,”
IEEE Comput. Intell. Mag.
,
1
(
1
), pp.
28
36
.10.1109/MCI.2006.1597059
41.
Baker
,
J. W.
,
Schubert
,
M.
, and
Faber
,
M. H.
,
2008
, “
On the Assessment of Robustness
,”
Struct. Saf.
,
30
(
3
), pp.
253
267
.10.1016/j.strusafe.2006.11.004
42.
Fink
,
G.
,
Steiger
,
R.
, and
Köhler
,
J.
,
2009
, “
Definition of Robustness and Related Terms
,”
Joint Workshop of COST Actions TU0601 and E55
,
Ljubljana
,
Slovenia
, Sept. 21–22, pp.
21
25
.
43.
Wieland
,
A.
, and
Wallenburg
,
C.
,
2012
, “
Dealing With Supply Chain Risks: Linking Risk Management Practices and Strategies to Performance
,”
Int. J. Phys. Distrib. Logistics Manage.
,
42
(
10
), pp.
887
905
.10.1108/09600031211281411
44.
Kitano
,
H.
,
2004
, “
Biological Robustness
,”
Nat. Rev. Genet.
,
5
(
11
), pp.
826
837
.10.1038/nrg1471
45.
Félix
,
M.-A.
, and
Wagner
,
A.
,
2008
, “
Robustness and Evolution: Concepts, Insights and Challenges From a Developmental Model System.
,”
Heredity
,
100
(
2
), pp.
132
40
.10.1038/sj.hdy.6800915
46.
Kuorikoski
,
J.
,
Lehtinen
,
A.
, and
Marchionni
,
C.
,
2007
, “
Economics as Robustness Analysis
,”
Models and Simulations 2
,
Tilburg
,
The Netherlands
, Oct. 11–13, pp.
1
29
.
47.
Shahrokni
,
A.
, and
Feldt
,
R.
,
2013
, “
A Systematic Review of Software Robustness
,”
Inf. Software Technol.
,
55
(
1
), pp.
1
17
.10.1016/j.infsof.2012.06.002
48.
Taguchi
,
G.
,
1993
,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME Press
,
NY
.
49.
Park
,
G.-J.
,
Lee
,
K.-H.
,
Kwon
,
H.
, and
Hwang
,
K.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.10.2514/1.13639
50.
Arvidsson
,
M.
,
2008
, “
Principles of Robust Design Methodology
,”
Qual. Reliab. Eng. Int.
,
24
(
1
), pp.
23
35
.10.1002/qre.864
51.
Suh
,
N.
,
2001
,
Axiomatic Design: Advances and Applications
,
Oxford Univ. Press
,
NY
.
52.
Box
,
G. E.
, and
Fung
,
C.
,
1993
, “
Is Your Robust Design Procedure Robust?
Qual. Eng.
,
6
(
3
), pp.
503
514
.10.1080/08982119408918744
53.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
,
2005
. “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput, Struct.
,
83
(
4–5
), pp.
315
326
.10.1016/j.compstruc.2004.10.007
54.
Huang
,
B.
, and
Du
,
X.
,
2007
, “
Analytical Robustness Assessment for Robust Design
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
123
137
.10.1007/s00158-006-0068-0
55.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
A Robust Design Method Using Variable Transformation and Gauss–Hermite Integration
,”
Int. J. Numer. Methods Eng.
,
66
(
12
), pp.
1841
1858
.10.1002/nme.1577
56.
Lee
,
M. C.
,
Mikulik
,
Z.
,
Kelly
,
D. W.
,
Thomson
,
R. S.
, and
Degenhardt
,
R.
,
2010
, “
Robust Design-A Concept for Imperfection Insensitive Composite Structures
,”
Compos. Struct.
,
92
(
6
), pp.
1469
1477
.10.1016/j.compstruct.2009.09.054
57.
Ferreira
,
J.
,
Fonseca
,
C. M.
,
Covas
,
J. A.
, and
Gaspar-Cunha
,
A.
,
2008
, “
Evolutionary Multi-Objective Robust Optimization
,”
Advances in Evolutionary Algorithms
,
Z.
Xiong
, ed.,
InTech
, Chap. 13.
58.
Barrico
,
C.
, and
Antunes
,
C.
,
2007
, “
An Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi-Objective Models
,”
Evolutionary Computation in Dynamic and Uncertain Environments–Studies in Computational Intelligence
(
Studies in Computational Intelligence
),
S.
Yang
,
Y.-S.
Ong
, and
Y.
Jin
, eds., Vol.
51
,
Springer
Berlin/Heidelberg
, pp.
565
582
.10.1007/978-3-540-49774-5_25
59.
Barrico
,
C.
,
Antunes
,
C.
, and
Pires
,
D.
,
2009
, “
Robustness Analysis in Evolutionary Multi-Objective Optimization Applied to VAR Planning in Electrical Distribution Networks
,”
Evolutionary Computation in Combinatorial Optimization
(
Lecture Notes in Computer Science
),
C.
Cotta
and
P.
Cowling
, eds., Vol.
5482
,
Springer
Berlin/Heidelberg
, pp.
216
227
.10.1007/978-3-642-01009-5_19
60.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
. “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.10.1115/1.4003918
61.
Nejlaoui
,
M.
,
Houidi
,
A.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2011
, “
Multiobjective Robust Design Optimization of Rail Vehicle
,”
13th World Congress in Mechanism and Machine Science, Guanajuato, México
, June 19–25, Paper No. A15_412.
62.
Nejlaoui
,
M.
,
Houidi
,
A.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2012
, “
Multiobjective Robust Design Optimization of Rail Vehicle Moving in Short Radius Curved Tracks Based on the Safety and Comfort Criteria
,”
Simul. Modell. Pract. Theory
,
30
, pp. 21–34.
63.
Erfani
,
T.
, and
Utyuzhnikov
,
S.
,
2010
, “
Handling Uncertainty and Finding Robust Pareto Frontier in Multiobjective Optimization Using Fuzzy Set Theory
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics, and Materials Conference
,
Orlando, FL
, Apr.12–15 pp.
1
7
.
64.
Erfani
,
T.
, and
Utyuzhnikov
,
S.
,
2012
, “
Control of Robust Design in Multiobjective Optimization Under Uncertainties
,”
Struct. Multidiscip. Optim.
,
45
(
2
), pp.
247
256
.10.1007/s00158-011-0693-0
65.
Ait Brik
,
B.
,
Ghanmi
,
S.
,
Bouhaddi
,
N.
, and
Cogan
,
S.
,
2006
, “
Robust Design in Structural Mechanics
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
8
(
1
), pp.
39
49
.10.1080/15502280601006264
66.
Ghanmi
,
S.
,
Bouazizi
,
M.
, and
Bouhaddi
,
N.
,
2007
, “
Robustness of Mechanical Systems Against Uncertainties
,”
Finite Elem. Anal. Des.
,
43
(
9
), pp.
715
731
.10.1016/j.finel.2007.03.005
67.
Ghanmi
,
S.
,
Guedri
,
M.
,
Bouazizi
,
M.-L.
, and
Bouhaddi
,
N.
,
2011
, “
Robust Multi-Objective and Multi-Level Optimization of Complex Mechanical Structures
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2444
2461
.10.1016/j.ymssp.2011.02.011
68.
Forouraghi
,
B.
,
2000
, “
A Genetic Algorithm for Multiobjective Robust Design
,”
Appl. Intell.
,
12
(
3
), pp.
151
161
.10.1023/A:1008356321921
69.
Ölvander
,
J.
,
2005
, “
Robustness Considerations in Multi-Objective Optimal Design
,”
J. Eng. Des.
,
16
(
5
), Oct., pp.
511
523
.10.1080/09544820500287300
70.
Avigad
,
G.
, and
Moshaiov
,
A.
,
2005
, “
MOEA-Based Approach to Delayed Decisions for Robust Conceptual Design
,”
Applications of Evolutionary Computing
(Lecture Notes in Computer Science),
Springer
Berlin/Heidelberg
, pp.
584
589
.10.1007/978-3-540-32003-6_61
71.
Xu
,
H.
,
Huang
,
H.
, and
Wang
,
Z.
,
2011
, “
Research on Multi-Objective Robust Design
,”
Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), International Conference on
,
Xi'an
,
China
, June 17–19, pp.
885
890
.10.1109/ICQR2MSE.2011.5976748
72.
Cromvik
,
C.
,
Lindroth
,
P.
,
Patriksson
,
M.
, and
Stromberg.
,
A.
,
2011
, A New Robustness Index for Multi-Objective Optimization Based on a User Perspective,
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg
., Gothenburg, Sweden.
73.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
.10.1115/1.2936898
74.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.10.1016/j.mechmachtheory.2008.10.003
75.
Fonseca
,
C.
, and
Fleming
,
P.
,
1998
, “
Multiobjective Optimization and Multiple Constraint Handling With Evolutionary Algorithms. I. A Unified Formulation
,”
IEEE Tran. Syst. Man Cybern. Part A
,
28
(
1
), pp.
26
37
.10.1109/3468.650319
76.
Augusto
,
O.
,
Rabeau
,
S.
,
Depince
,
P.
, and
Bennis
,
F.
,
2006
, “
Multi-Objective Genetic Algorithms: A Way to Improve the Convergence Rate
,”
Eng. Appl. Artif. Intell.
,
19
(
5
), pp.
501
510
.10.1016/j.engappai.2006.01.010
77.
McKay
,
M.
,
Beckman
,
R.
, and
Conover
,
W.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
78.
Luo
,
B.
,
2008
, “
Efficient MOEAs With an Adaptive Sampling Technique in Searching Robust Optimal Solutions
,”
Proceedings of the 7th World Congress on Intelligent Control and Automation
,
Chongqing
,
China
, June 25–27, Vol.
863
, pp.
117
123
.10.1109/WCICA.2008.4592909
79.
Petrone
,
G.
,
Nicola
,
C. D.
,
Quagliarella
,
D.
,
Witteveen
,
J.
, and
Iaccarino
,
G.
,
2011
, “
Wind Turbine Performance Analysis Under Uncertainty
,”
AIAA
Paper No. AIAA 2011–544.
80.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
, and
Salinas Mejia
,
O. R.
,
2012
, “
Optimal Design of a Simplified Morphing Blade for Fixed-Speed Horizontal Axis Wind Turbines
,”
ASME
Paper No. DETC2012–70225.10.1115/DETC2012-70225
81.
Deb
,
K.
,
Pratap
,
A.
, and
Agarwal
,
S.
,
2002
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.