It is important for engineers to understand the capabilities and limitations of the technologies they consider for use in their systems. However, communicating this information can be a challenge. Mathematical characterizations of technical capabilities are of interest as a means to reduce ambiguity in communication and to increase opportunities to utilize design automation methods. The parameterized Pareto frontier (PPF) was introduced in prior work as a mathematical basis for modeling technical capabilities. One advantage of PPFs is that, in many cases, engineers can model a system by composing frontiers of its components. This allows for rapid technology evaluation and design space exploration. However, finding the PPF can be difficult. The contribution of this article is a new algorithm for approximating the PPF, called predictive parameterized Pareto genetic algorithm (P3GA). The proposed algorithm uses concepts and methods from multi-objective genetic optimization and machine learning to generate a discrete approximation of the PPF. If needed, designers can generate a continuous approximation of the frontier by generalizing beyond these data. The algorithm is explained, its performance is analyzed on numerical test problems, and its use is demonstrated on an engineering example. The results of the investigation indicate that P3GA may be effective in practice.

References

References
1.
Sage
,
A. P.
, and
Armstrong
,
J. E.
, Jr.
,
2000
,
Introduction to Systems Engineering
,
Wiley and Sons
.
2.
Buede
,
D. M.
,
2000
,
The Engineering Design of Systems
,
Wiley
,
New York
.
3.
Wymore
,
A. W.
,
1993
,
Model-Based Systems Engineering: An Introduction to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System Design
, Vol.
3
,
CRC Press
,
Boca Raton, FL
.
4.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
,
2010
, “
Using Parameterized Pareto Sets to Model Design Concepts
,”
ASME J. Mech. Des.
,
132
(4)
, p.
041007
.10.1115/1.4001345
5.
Malak
,
R. J.
,
2008
, “
Using Parameterized Efficient Sets to Model Alternatives for Systems Design Decisions
,” Ph.D. thesis, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
6.
Galvan
,
E.
, and
Malak
,
R. J.
,
2010
, “
Using Predictive Modeling Techniques to Solve Multilevel Systems Design Problems
,”
13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Fort Worth, TX
, Sept. 13–15, Paper No. AIAA-2010-9266.
7.
Malak
,
R. J.
,
Tucker
,
L.
, and
Paredis
,
C. J. J.
,
2009
, “
Compositional Modeling of Fluid Power Systems Using Predictive Tradeoff Models
,”
Int. J. Fluid Power
,
10
(
2
), pp.
45
55
.10.1080/14399776.2009.10780977
8.
Parker
,
R. R.
,
Galvan
,
E.
, and
Malak
,
R. J.
,
2013
, “
Technology Characterization Models and Their Use in Systems Design
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071003
.10.1115/1.4025960
9.
Lin
,
J. G.
,
1976
, “
Multiple-Objective Problems: Pareto-Optimal Solutions by Method of Proper Equality Constraints
,”
IEEE Trans. Autom. Control
,
21
(
5
), pp.
641
650
.10.1109/TAC.1976.1101338
10.
Messac
,
A.
, and
Mattson
,
C. A.
,
2004
, “
Normal Constraint Method With Guarantee of Even Representation of Complete Pareto Frontier
,”
AIAA J.
,
42
(
10
), pp.
2101
2111
10.2514/1.8977.
11.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.10.1137/S1052623496307510
12.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
13.
Ferguson
,
S.
,
Gurnani
,
A.
,
Donndelinger
,
J.
, and
Lewis
,
K.
,
2005
, “
A Study of Convergence and Mapping in Preliminary Vehicle Design
,”
Int. J. Veh. Syst. Modell. Test.
,
1
(
1–3
), pp.
192
215
.10.1504/IJVSMT.2005.008579
14.
Mattson
,
C. A.
, and
Messac
,
A.
,
2003
, “
Concept Selection Using S-Pareto Frontiers
,”
AIAA J.
,
41
(
6
), pp.
1190
1198
.10.2514/2.2063
15.
Mattson
,
C. A.
, and
Messac
,
A.
,
2005
, “
Pareto Frontier Based Concept Selection Under Uncertainty, With Visualization
,”
Optim. Eng.
,
6
(
1
), pp.
85
115
.10.1023/B:OPTE.0000048538.35456.45
16.
Gurnani
,
A.
,
Ferguson
,
S.
,
Lewis
,
K. E.
, and
Donndelinger
,
J.
,
2006
, “
A Constraint-Based Approach to Feasibility Assessment in Preliminary Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
20
(
04
), pp.
351
367
.10.1017/S0890060406060252
17.
Ulrich
,
K. T.
,
2005
, “
Estimating the Technology Frontier for Personal Electric Vehicles
,”
Transp. Res. Part C
,
13
(
5–6
), pp.
448
462
.10.1016/j.trc.2006.01.002
18.
Huang
,
C. H.
,
Galuski
,
J.
, and
Bloebaum
,
C. L.
,
2007
, “
Multi-Objective Pareto Concurrent Subspace Optimization for Multidisciplinary Design
,”
AIAA J.
,
45
(
8
), pp.
1894
1906
10.2514/1.19972.
19.
Goel
,
T.
,
Vaidyanathan
,
R.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Queipo
,
N. V.
, and
Tucker
,
K.
,
2007
, “
Response Surface Approximation of Pareto Optimal Front in Multi-Objective Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
879
893
.10.1016/j.cma.2006.07.010
20.
Ikeda
,
K.
,
Kita
,
H.
, and
Kobayashi
,
S.
,
2001
, “
Failure of Pareto-Based MOEAs: Does Non-Dominated Really Mean Near to Optimal?
,”
Proceedings of the 2001 Congress on Evolutionary Computation
, Vol.
2
, pp.
957
962
.10.1109/CEC.2001.934293
21.
Laumanns
,
M.
,
Thiele
,
L.
,
Deb
,
K.
, and
Zitzler
,
E.
,
2002
, “
Combining Convergence and Diversity in Evolutionary Multiobjective Optimization
,”
Evol. Comput.
,
10
(
3
), pp.
263
282
.10.1162/106365602760234108
22.
Drechsler
,
N.
,
Drechsler
,
R.
, and
Becker
,
B.
,
2001
, “
Multi-Objective Optimisation Based on Relation Favour
,”
Evolutionary Multi-Criterion Optimization
,
Springer
, Heidelberg, Germany, pp.
154
166
.
23.
Campbell
,
M. I.
,
2012
, “
The Skewboid Method: A Simple and Effective Approach to Pareto Relaxation and Filtering
,”
ASME
Paper No. DETC2012-7032310.1115/DETC2012-70323.
24.
Miettinen
,
K.
,
1999
,
Nonlinear Multiobjective Optimization
, Vol.
12
,
Kluwer Academic Publishers
, Boston.
25.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
26.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
.
27.
Abbass
,
H. A.
,
2002
, “
The Self-Adaptive Pareto Differential Evolution Algorithm
,”
Congress on Evolutionary Computation
, Honolulu, HI, May 12–17, Vol. 1, pp.
831
836
10.1109/CEC.2002.1007033.
28.
Horn
,
J.
,
Nafpliotis
,
N.
, and
Goldberg
,
D. E.
,
1994
, “
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
,”
IEEE World Congress on Computational Intelligence First IEEE Conference on Evolutionary Computation
, NJ, IEEE Press, Vol.
1
, pp.
82
87
.
29.
Poloni
,
C.
,
Giurgevich
,
A.
,
Onesti
,
L.
, and
Pediroda
,
V.
,
2000
, “
Hybridization of a Multi-Objective Genetic Algorithm, a Neural Network and a Classical Optimizer for a Complex Design Problem in Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2–4
), pp.
403
420
.10.1016/S0045-7825(99)00394-1
30.
Sarkar
,
D.
, and
Modak
,
J. M.
,
2005
, “
Pareto-Optimal Solutions for Multi-Objective Optimization of Fed-Batch Bioreactors Using Nondominated Sorting Genetic Algorithm
,”
Chem. Eng. Sci.
,
60
(
2
), pp.
481
492
.10.1016/j.ces.2004.07.130
31.
Nandasana
,
A. D.
,
Ray
,
A. K.
, and
Gupta
,
S. K.
,
2003
, “
Applications of the Non-Dominated Sorting Genetic Algorithm (NSGA) in Chemical Reaction Engineering
,”
Int. J. Chem. React. Eng.
,
1
(
1
), pp.
1
16
.
32.
Kannan
,
S.
,
Baskar
,
S.
,
McCalley
,
J. D.
, and
Murugan
,
P.
,
2009
, “
Application of NSGA-II Algorithm to Generation Expansion Planning
,”
IEEE Trans. Power Syst.
,
24
(
1
), pp.
454
461
.10.1109/TPWRS.2008.2004737
33.
Agrawal
,
N.
,
Rangaiah
,
G. P.
,
Ray
,
A. K.
, and
Gupta
,
S. K.
,
2007
, “
Design Stage Optimization of an Industrial Low-Density Polyethylene Tubular Reactor for Multiple Objectives Using NSGA-II and Its Jumping Gene Adaptations
,”
Chem. Eng. Sci.
,
62
(
9
), pp.
2346
2365
.10.1016/j.ces.2007.01.030
34.
Shan
,
S.
, and
Wang
,
G. G.
,
2005
, “
An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
866
874
.10.1115/1.1904639
35.
Tax
,
D. M. J.
, and
Duin
,
R. P. W.
,
1999
, “
Support Vector Domain Description
,”
Pattern Recogn. Lett.
,
20
(
11–13
), pp.
1191
1199
.10.1016/S0167-8655(99)00087-2
36.
Malak
,
J. R. J.
, and
Paredis
,
C. J. J.
,
2010
, “
Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems
,”
ASME J. Mech. Des.
,
132
(10), p.
101001
.10.1115/1.4002151
37.
Scholkopf
,
B.
,
Williamson
,
R.
,
Smola
,
A.
,
Shawe-Taylor
,
J.
, and
Platt
,
J.
,
2000
, “
Support Vector Method for Novelty Detection
,”
Advances in Neural Information Processing Systems
, MIT Press, Cambridge, MA, pp.
582
588
.
38.
Wolfe
,
P.
,
1961
, “
A Duality Theorem for Nonlinear Programming
,”
Qtr. Appl. Math.
,
19
(3), pp.
239
–233.
39.
Cauwenberghs
,
G.
, and
Poggio
,
T.
,
2000
, “
Incremental and Decremental Support Vector Machine Learning
,”
Neural Information Processing Systems
, Denver, CO, pp.
409
415
.
40.
Roach
,
E.
,
Parker
,
R. R.
, and
Malak
,
R. J.
,
2011
, “
An Improved Support Vector Domain Description Method for Modeling Valid Search Domains in Engineering Design Problems
,”
ASME
2011 Paper No. DETC2011-4843510.1115/DETC2011-48435.
41.
Deb
,
K.
,
1999
, “
Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems
,”
Evol. Comput.
,
7
(
3
), pp.
205
230
.10.1162/evco.1999.7.3.205
42.
Deb
,
K.
,
Horn
,
J.
, and
Goldberg
,
D. E.
,
1993
, “
Multimodal Deceptive Functions
,”
Complex Syst.
,
7
(
2
), pp.
131
154
10.1162/evco.1999.7.3.205.
43.
Li
,
H.
, and
Zhang
,
Q.
,
2009
, “
Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
284
302
.10.1109/TEVC.2008.925798
44.
Bader
,
J. M.
,
2010
, “
Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods
,” Ph.D. thesis, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
45.
Farina
,
M.
,
Deb
,
K.
, and
Amato
,
P.
,
2004
, “
Dynamic Multiobjective Optimization Problems: Test Cases, Approximations, and Applications
,”
IEEE Trans. Evol. Comput.
,
8
(
5
), pp.
425
442
.10.1109/TEVC.2004.831456
46.
Huband
,
S.
,
Hingston
,
P.
,
Barone
,
L.
, and
While
,
L.
,
2006
, “
A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit
,”
IEEE Trans. Evol. Comput.
,
10
(
5
), pp.
477
506
.10.1109/TEVC.2005.861417
47.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Zitzler
,
E.
,
Abraham
,
A.
,
Jain
,
L.
, and
Goldberg
,
R.
,
2005
, “
Scalable Test Problems for Evolutionary Multiobjective Optimization Evolutionary Multiobjective Optimization
,”
Evolutionary Multiobjective Optimization
,
Springer
,
Berlin, Heidelberg
, pp.
105
145
.
48.
Galvan
,
E.
,
2012
, “
A Genetic Algorithm Approach for Technology Characterization
,” Master of Science, Department of Mechanical Engineering, Texas A&M University, College Station, TX.
49.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C. M.
, and
Da Fonseca
,
V. G.
,
2003
, “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
117
132
.10.1109/TEVC.2003.810758
50.
Knowles
,
J. D.
,
Thiele
,
L.
, and
Zitzler
,
E.
,
2006
, “
A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers
,” Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, TIK Report No. 214.
51.
Deb
,
K.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2001
, “
Constrained Test Problems for Multi-Objective Evolutionary Optimization
,”
Evolutionary Multi-Criterion Optimization
,
Springer
,
Berlin, Heidelberg
, pp.
284
298
.
52.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2002
, “
Scalable Multi-Objective Optimization Test Problems
,”
Proceedings of the 2002 Congress on Evolutionary Computation
, CEC '02, Honolulu, HI, May 12–17, pp.
825
830
10.1109/CEC.2002.1007032.
53.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.10.1162/106365600568202
54.
Zitzler
,
E.
, and
Thiele
,
L.
,
1998
, “
Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study
,” Parallel Problem Solving From Nature V, Springer, Berlin, Heidelberg, pp. 292–301.
55.
Esbensen
,
H.
, and
Kuh
,
E. S.
,
1996
, “
Design Space Exploration Using the Genetic Algorithm
,” 1996
IEEE
International Symposium on Circuits and Systems
, ISCAS '96, Connecting the World, Atlanta, GA, May 12–15, Vol.
4
, pp.
500
503
10.1109/ISCAS.1996.542010.
56.
Fonseca
,
C.
, and
Fleming
,
P.
,
1996
, “
On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers
,”
Parallel Problem Solving from Nature—PPSN IV
, Vol.
1141
,
H.-M.
Voigt
,
W.
Ebeling
,
I.
Rechenberg
, and
H.-P.
Schwefel
, eds.,
Springer
,
Berlin, Heidelberg
, Germany, pp.
584
593
.
57.
Sayın
,
S.
,
2000
, “
Measuring the Quality of Discrete Representations of Efficient Sets in Multiple Objective Mathematical Programming
,”
Math. Program.
,
87
(
3
), pp.
543
560
.10.1007/s101070050128
58.
Cignoni
,
P.
,
Rocchini
,
C.
, and
Scopigno
,
R.
,
1998
, “
Metro: Measuring Error on Simplified Surfaces
,”
Comput. Graph. Forum
,
17
(
2
), pp.
167
174
.10.1111/1467-8659.00236
59.
Aspert
,
N.
,
Santa-Cruz
,
D.
, and
Ebrahimi
,
T.
,
2002
, “
MESH: Measuring Errors Between Surfaces Using the Hausdorff Distance
,”
IEEE International Conference in Multimedia and Expo
, Lausanne, Switzerland, Aug. 26–29, pp.
705
708
.
60.
Schutze
,
O.
,
Esquivel
,
X.
,
Lara
,
A.
, and
Coello
,
C. A. C.
,
2012
, “
Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
,
16
(
4
), pp.
504
522
.10.1109/TEVC.2011.2161872
61.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.10.1109/4235.797969
62.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
2001
,
Mechanical Engineering Design
,
6th ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.