Selecting an appropriate concept design in the early stage of the product development process is crucial for successful machine development. As one of the important design requirements, a structural design needs to validate the structural fatigue life against physical tests of actual field operations. Traditionally, the fatigue design loads for the concept design evaluations are generated by hand calculations based on past experience to capture envelopes of expected system responses. But such an approach often does not capture actual loading behaviors in the field. An alternative approach of leveraging observed data from physical tests is highly desired, and a new method of this approach is introduced in this study. Our goal is to develop a new methodology of identifying fundamental fatigue load (FFL) contents from observed data by using engineering data analytics (EDA) techniques. The proposed methodology is applied to determine a new sensor layout which enables us to capture fundamental structural damage load patterns. Numerical demonstrations and case studies of the proposed method are presented with a common structural component, an I-section cantilever beam, and an industrial large-scale structure, a front linkage of a hydraulic excavator.

References

References
1.
Dieter
,
G. E.
, and
Schmidt
,
L. C.
,
2013
,
Engineering Design
,
5th ed.
,
McGraw-Hill
,
New York
.
2.
Wang
,
L.
,
Shen
,
W.
,
Xie
,
H.
,
Neelamkavil
,
J.
, and
Pardasani
,
A.
,
2002
, “
Collaborative Conceptual Design—State of the Art and Future Trends
,”
Comput. -Aided Des.
,
34
, pp.
981
996
.10.1016/S0010-4485(01)00157-9
3.
Worden
,
K.
, and
Burrows
,
A.
,
2001
, “
Optimal Sensor Placement for Fault Detection
,”
Eng. Struct.
,
23
(
8
), pp.
885
901
.10.1016/S0141-0296(00)00118-8
4.
Padula
,
S. L.
,
Palumbo
,
D. L.
,
Kincaid
,
R. K.
,
Asme
,
T. A.
, and
Ahs
,
A.
,
1998
Optimal Sensor/Actuator Locations for Active Structural Acoustic Control
,” Proceedings of the 39th
AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, AIAA-98-1865, Long Beach, CA.10.2514/6.1998-1865
5.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Czarnecki
,
J. J.
,
Shunk
,
D. D.
,
Stinemates
,
D. W.
, and
Nadler
,
B. R.
,
2003
, “
A Review of Structural Health Monitoring Literature: 1996–2001
,” Los Alamos National Laboratory Report, Report No. LA-13976-MS.
6.
Meo
,
M.
, and
Zumpano
,
G.
,
2005
, “
On the Optimal Sensor Placement Techniques for a Bridge Structure
,”
Eng. Struct.
,
27
(
10
), pp.
1488
1497
.10.1016/j.engstruct.2005.03.015
7.
Kirkegaard
,
P. H.
, and
Brincker
,
R.
,
1994
, “
On the Optimal Location of Sensors for Parametric Identification of Linear Structural Systems
,”
Mech. Syst. Signal Process.
,
8
, pp.
639
647
.10.1006/mssp.1994.1045
8.
Breitfeld
,
T. A.
,
1995
, “
Method for Identification of a Set of Optimal Points for Experimental Modal Analysis
,” J. Anal. Exp. Modal Anal.,
11
(1), pp. 1–9.
9.
Kammer
,
D. C.
, and
Brillhart
,
R. D.
,
1996
, “
Optimal Sensor Placement for Modal Identification Using System-Realization Methods
,”
J. Guid., Control Dyn.
,
19
, pp.
729
31
.10.2514/3.21688
10.
Heo
,
G.
,
Wang
,
M. L.
, and
Satpathi
,
D.
,
1997
, “
Optimal Transducer Placement for Health Monitoring of Long Span Bridge
,”
Soil Dyn. Earthquake Eng.
,
16
, pp.
495
502
.10.1016/S0267-7261(97)00010-9
11.
Lam
,
H.-F.
, and
Yin
,
T.
,
2011
, “
Dynamic Reduction-Based Structural Damage Detection of Transmission Towers: Practical Issues and Experimental Verification
,”
Eng. Struct.
,
33
(
5
), pp.
1459
1478
.10.1016/j.engstruct.2011.01.009
12.
Rezaei
,
D.
, and
Taheri
,
F.
,
2010
, “
Damage Identification in Beams Using Empirical Mode Decomposition
,”
Struct. Health Monit.
,
10
(
3
), pp.
261
274
.10.1177/1475921710373298
13.
Cheraghi
,
N.
, and
Taheri
,
F.
,
2007
, “
A Damage Index for Structural Health Monitoring Based on the Empirical Mode Decomposition
,”
J. Mech. Mater. Struct.
,
2
(
1
), pp.
43
62
.10.2140/jomms.2007.2.43
14.
Wentzel
,
H.
,
2013
, “
Fatigue Test Load Identification Using Weighted Model Filtering Based on Stress
,”
Mech. Syst. Signal Process.
,
40
, pp.
618
627
.10.1016/j.ymssp.2013.06.014
15.
Kang
,
B. S.
,
Park
,
G. J.
, and
Arora
,
J. S.
,
2005
, “
Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method
,”
AIAA J.
,
43
(
4
), pp.
846
852
.10.2514/1.4294
16.
Park
,
K. J.
,
Lee
,
J. N.
, and
Park
,
G. J.
,
2005
, “
Structural Shape Optimization Using Equivalent Static Loads Transformed From Dynamic Loads
,”
Int. J. Numer. Methods Eng.
,
63
, pp.
589
602
.10.1002/nme.1295
17.
Wickham
,
M. J.
,
Riley
,
D. R.
, and
Nachtsheim
,
C. J.
,
1995
, “
Integrating Optimal Experimental Design Into the Design of a Multi-Axis Load Transducer
,”
J. Eng. Ind.
,
117
, pp.
400
405
.10.1115/1.2804346
18.
Oh
,
C. S.
,
2001
, “
Application of Wavelet Transform in Fatigue History Editing
,”
Int. J. Fatigue
,
23
, pp.
241
250
.10.1016/S0142-1123(00)00091-8
19.
Abdullah
,
S.
,
Choi
,
J. C.
,
Giacomin
,
J. A.
, and
Yates
,
J. R.
,
2006
, “
Bump Extraction Algorithm for Variable Amplitude Fatigue Loading
,”
Int. J. Fatigue
,
28
, pp.
675
691
.10.1016/j.ijfatigue.2005.09.003
20.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech
,
12
(3), pp.
A159
A164
.
21.
Downing
,
S. D.
, and
Socie
,
D. F.
,
1982
, “
Simple Rainflow Counting Algorithms
,”
Int. J. Fatigue
,
4
(
1
), pp.
31
40
.10.1016/0142-1123(82)90018-4
22.
Haiba
,
M.
,
Barton
,
D. C.
,
Brooks
,
P. C.
, and
Levesley
,
M. C.
,
2002
, “
Review of Life Assessment Techniques Applied to Dynamically Loaded Automotive Components
,”
Comput. Struct.
,
80
, pp.
481
494
.10.1016/S0045-7949(02)00022-6
23.
Huang
,
L.
,
Agrawal
,
H.
, and
Kurudiyara
,
P.
,
1998
, “
Dynamic Durability Analysis of Automotive Structures
,” Society of Automotive Engineering,
SAE Paper No. 980695
.10.4271/980695
24.
Conle
,
F. A.
, and
Mousseau
,
C. W.
,
1991
, “
Using Vehicle Dynamics Simulations and Finite-Element Results to Generate Fatigue Life Contours for Chassis Components
,”
Int. J. Fatigue
,
13
(
3
), pp.
195
205
.10.1016/0142-1123(91)90241-P
25.
Socie
,
D. F.
, and
Marquis
,
G. B.
, “
Multiaxial Fatigue
,” SAE International, ed, Warrendale, PA.
26.
Fayyad
,
U.
,
Piatetsky-shapiro
,
G.
, and
Smyth
,
P.
,
1996
, “
From Data Mining to Knowledge Discovery in Databases
,”
Artif. Intell. (AI) Mag.
,
17
(
3
), pp.
37
54
.10.1609/aimag.v17i3.1230
27.
Lan
,
H.
,
2011
,
Data Mining: Practical Machine Learning Tools and Techniques
,
3rd ed.
,
Morgan Kaufman
,
Boston
.
28.
Allemang
,
R. J.
,
2002
, “
The Modal Assurance Criterion (MAC): Twenty Years of Use and Abuse
,”
Proceedings of the International Modal Analysis Conference IMAC 20
, Los Angeles, CA, pp.
397
405
.
29.
Gen
,
M.
, and
Cheng
,
R.
,
2000
,
Genetic Algorithms and Engineering Optimization
,
Wiley
,
New York
.10.1002/9780470172261
30.
Fe-Safe User's Manual
,” Safe Technology Limited, Sheffield, UK,
2011
.
You do not currently have access to this content.