Cycloidal speed reducers are composed primarily of an eccentric shaft, output parts, and a set comprising a cycloidal gear and pinwheel with pins or a cycloidal gear and cycloid internal gear. This paper investigates the contact and collision conditions of these components, as well as their stress variations during the transmission process. To do so, a system dynamics analysis model of a cycloidal speed reducer is constructed, together with dynamics analysis models for two design types: A traditional pinwheel design and a nonpinwheel design (i.e., a design in which a cycloid internal gear replaces the pinwheel). Based on the theory of gearing, a mathematical model of the pinwheel with pins, cycloidal gear, and cycloid internal gear is then built from which the component geometry can be derived. These dynamics analysis models, constructed concurrently, are used to investigate the components' movements and stress variations, and determine the differences between the transmission mechanisms. The results indicate that the nonpinwheel design effectively reduces vibration, stress value, and stress fluctuation, thereby enhancing performance. An additional torsion test further suggests that the nonpinwheel design's output rate is superior to that of the traditional pinwheel design.

References

References
1.
Blanche
,
J. G.
, and
Yang
,
D. C. H.
,
1989
, “
Cycloid Drives With Machining Tolerances
,”
ASME J. Mech. Des.
,
111
(
3
), pp.
337
344
.10.1115/1.3259004
2.
Yang
,
D. C. H.
, and
Blanche
,
J. G.
,
1990
, “
Design and Application Guidelines for Cycloid Drives With Machining Tolerances
,”
Mech. Mach. Theory
,
25
(
5
), pp.
487
501
.10.1016/0094-114X(90)90064-Q
3.
Shung
,
J. B.
, and
Pennock
,
G. R.
,
1994
, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
,
29
(
1
), pp.
25
42
.10.1016/0094-114X(94)90017-5
4.
Litvin
,
F. L.
, and
Feng
,
P. H.
,
1996
, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
,
31
(
7
), pp.
891
911
.10.1016/0094-114X(95)00115-F
5.
Litvin
,
F. L.
,
Demenego
,
A.
, and
Vecchiato
,
D.
,
2001
, “
Formation by Branches of Envelope to Parametric Families of Surfaces and Curves
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4587
4608
.10.1016/S0045-7825(00)00334-0
6.
Yan
,
H. S.
, and
Lai
,
T. S.
,
2002
, “
Geometry Design of an Elementary Planetary Gear Train With Cylindrical Tooth Profiles
,”
Mech. Mach. Theory
,
37
(
8
), pp.
757
767
.10.1016/S0094-114X(02)00009-5
7.
Li
,
X.
,
He
,
W.
,
Li
,
L.
, and
Schmidt
,
L. C.
,
2004
, “
A New Cycloid Drive With High-Load Capacity and High Efficiency
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
683
686
.10.1115/1.1758254
8.
Shin
,
J. H.
, and
Kwon
,
S. M.
,
2006
, “
On the Lobe Profile Design in a Cycloid Reducer Using Instant Velocity Center
,”
Mech. Mach. Theory
,
41
(
5
), pp.
596
616
.10.1016/j.mechmachtheory.2005.08.001
9.
Mimmi
,
G. C.
, and
Pennacchi
,
P. E.
,
2000
, “
Non-Undercutting Conditions in Internal Gears
,”
Mech. Mach. Theory
,
35
(
4
), pp.
477
490
.10.1016/S0094-114X(99)00028-2
10.
Fong
,
Z. H.
, and
Tsay
,
C. W.
,
2000
, “
Study on the Undercutting of Internal Cycloidal Gear With Small Tooth Difference
,”
J. Chin. Soc. Mech. Eng.
,
21
(
4
), pp.
359
367
.
11.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Geometric Design Using Hypotrochoid and Non-undercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
413
420
.10.1115/1.2437806
12.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Determination of Surface Singularities of a Cycloidal Gear Drive With Inner Meshing
,”
Math. Comput. Model.
,
45
(
4
), pp.
340
354
.10.1016/j.mcm.2006.05.010
13.
Chen
,
G.
,
Zhong
,
H.
,
Liu
,
J.
,
Li
,
C.
, and
Fang
,
T.
,
2012
, “
Generation and Investigation of a New Cycloid Drive With Double Contact
,”
Mech. Mach. Theory
,
49
(
3
), pp.
270
283
.10.1016/j.mechmachtheory.2011.10.001
14.
Malhotra
,
S. K.
, and
Parameswaran
,
M. A.
,
1983
, “
Analysis of a Cycloid Speed Reducer
,”
Mech. Mach. Theory
,
18
(
6
), pp.
491
499
.10.1016/0094-114X(83)90066-6
15.
Yunhong
,
M.
,
Changlin
,
W.
, and
Liping
,
L.
,
2007
, “
Mathematical Modeling of the Transmission Performance of 2K-H Pin Cycloid Planetary Mechanism
,”
Mech. Mach. Theory
,
42
(
7
), pp.
776
790
.10.1016/j.mechmachtheory.2006.07.003
16.
Gorla
,
C.
,
Davoli
,
P.
,
Rosa
,
F.
,
Longoni
,
C.
,
Chiozzi
,
F.
, and
Samarani
,
A.
,
2008
, “
Theoretical and Experimental Analysis of a Cycloidal Speed Reducer
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112604
.10.1115/1.2978342
17.
Kahraman
,
A.
,
Ligata
,
H.
, and
Singh
,
A.
,
2010
, “
Influence of Ring Gear Rim Thickness on Planetary Gear Set Behavior
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021002
.10.1115/1.4000699
18.
Blagojevic
,
M.
,
Marjanovic
,
N.
,
Djordjevic
,
Z.
,
Stojanovic
,
B.
, and
Disic
,
A.
,
2011
, “
A New Design of a Two-Stage Cycloidal Speed Reducer
,”
ASME J. Mech. Des.
,
133
(
8
), p.
085001
.10.1115/1.4004540
19.
Sensinger
,
J. W.
,
2010
, “
Unified Approach to Cycloid Drive Profile, Stress, and Efficiency Optimization
,”
ASME J. Mech. Des.
,
132
(
2
), p.
024503
.10.1115/1.4000832
20.
Sensinger
,
J. W.
,
2013
, “
Efficiency of High-Sensitivity Gear Trains, Such as Cycloid Drives
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071006
.10.1115/1.4024370
21.
Sensinger
,
J. W.
, and
Lipsey
,
J. H.
,
2012
, “
Cycloid vs. Harmonic Drives for Use in High Ratio, Single Stage Robotic Transmissions
,”
IEEE Conference on Robotics and Automation, St. Paul, MN
, pp.
4130
4135
.10.1109/ICRA.2012.6224739
22.
Ivanović
,
L.
,
Devedžić
,
G.
,
Ćuković
,
S.
, and
Mirić
,
N.
,
2012
, “
Modeling of the Meshing of Trochoidal Profiles With Clearances
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041003
.10.1115/1.4005621
23.
Litvin
,
F. L.
,
1994
,
Gear Geometry and Applied Theory
,
Prentice Hall
,
New York
.
24.
He
,
B.
,
Wang
,
G. P.
, and
Rui
,
X. T.
,
2008
,
Transfer Matrix Method of Multibody System and Its Applications
,
Science Press Ltd.
, Beijing, China.
You do not currently have access to this content.