This paper deals with the design of a cable-driven manipulator (CDM) with instrumented structure for magnetic resonance imaging (MRI)-guided interventions. The strong magnetic field and the limited space inside the scanner constitute two severe design constraints. To handle them, a new synthesis approach for CDM is proposed in order to optimize the device compactness. This approach is based on the use of the zonotope properties to optimize the robot geometry, and the interval analysis tools for its validation. Remote actuation with Bowden cables is considered for MRI-compatibility. High friction along the line transmissions can then be expected which leads to a new instrumentation for cable tension evaluation. A prototype is manufactured and assessed. The principle of the instrumentation is validated as well as the user requirements in terms of workspace and ability to resist to external forces applied by the physician.

References

References
1.
Tempany
,
C.
, and
Franco
,
F.
,
2012
, “
Prostate MRI: Update and Current Roles
,”
Appl. Radiol.
,
41
(
3
), pp.
17
22
.
2.
Accessed in 2014, “
GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012
,” http://globocan.iarc.fr
3.
Chinzei
,
K.
, and
Miller
,
K.
,
2001
, “
MRI Guided Surgical Robot
,”
Australian Conference on Robotics and Automation
, Sydney, Australia, Nov., pp.
50
55
.
4.
Song
,
S.-E.
,
Cho
,
N.
,
Fischer
,
G.
,
Hata
,
N.
,
Tempany
,
C.
,
Fichtinger
,
G.
, and
Iordachita
,
I.
,
2010
, “
Development of a Pneumatic Robot for MRI-Guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Anchorage, AK, May, pp.
2580
2585
.
5.
Su
,
H.
,
Zervas
,
M.
,
Cole
,
G.
,
Furlong
,
C.
, and
Fischer
,
G.
,
2011
, “
Real-Time MRI-Guided Needle Placement Robot With Integrated Fiber Optic Force Sensing
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Shanghai, China, May, pp.
1583
1588
.
6.
Patriciu
,
A.
,
Petrisor
,
D.
,
Muntener
,
M.
,
Mazilu
,
D.
,
Schar
,
M.
, and
Stoianovici
,
D.
,
2007
, “
Automatic Brachytherapy Seed Placement Under MRI Guidance
,”
IEEE Trans. Biomed. Eng.
,
54
(
8
), pp.
1499
1506
.10.1109/TBME.2007.900816
7.
Goldenberg
,
A.
,
Trachtenberg
,
J.
,
Kucharczyk
,
W.
,
Yi
,
Y.
,
Haider
,
M.
,
Ma
,
L.
,
Weersink
,
R.
, and
Raoufi
,
C.
,
2008
, “
Robotic System for Closed-Bore MRI-Guided Prostatic Interventions
,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
374
379
.10.1109/TMECH.2008.924122
8.
Fischer
,
G.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
DiMaio
,
S.
,
Tempany
,
C.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
295
305
.10.1109/TMECH.2008.924044
9.
Elhawary
,
H.
,
Tse
,
Z.
,
Rea
,
M.
,
Zivanovic
,
A.
,
Davies
,
B. L.
,
Besant
,
C.
,
de Souza
,
N.
,
McRobbie
,
D.
,
Young
,
I.
, and
Lamperth
,
M.
,
2010
, “
Robotic System for Transrectal Biopsy of the Prostate: Real-Time Guidance Under MRI
,”
IEEE Eng. Med. Biol. Mag.
,
29
(
2
), pp.
78
86
.10.1109/MEMB.2009.935709
10.
Plante
,
J.-S.
,
Devita
,
L.
,
Tadakuma
,
K.
, and
Dubowsky
,
S.
,
2009
, “
MRI Compatible Device for Robotic Assisted Interventions to Prostate Cancer
,”
Biomedical Applications of Electroactive Polymer Actuators
,
John Wiley & Sons, Ltd
, pp.
411
425
.
11.
Krieger
,
A.
,
Iordachita
,
I.
,
Song
,
S.-E.
,
Cho
,
N.
,
Guion
,
P.
,
Fichtinger
,
G.
, and
Whitcomb
,
L.
,
2010
, “
Development and Preliminary Evaluation of an Actuated MRI-Compatible Robotic Device for MRI-Guided Prostate Intervention
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Anchorage, AK, May, pp.
1066
1073
.
12.
Gangi
,
A.
,
Tsoumakidou
,
G.
,
Abdelli
,
O.
,
Buy
,
X.
,
Mathelin
,
M.
,
Jacqmin
,
D.
, and
Lang
,
H.
,
2012
, “
Percutaneous MR-Guided Cryoablation of Prostate Cancer: Initial Experience
,”
Eur. Radiol.
,
22
(
8
), pp.
1829
1835
.10.1007/s00330-012-2411-8
13.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
, and
Grigoriadis
,
K.
,
2012
, “
Robocath: A Patient-Mounted Parallel Robot to Position and Orient Surgical Catheters
,”
ASME
Paper No. DSCC2012-MOVIC2012-8846.10.1115/DSCC2012-MOVIC2012-8846
14.
Hungr
,
N.
,
Fouard
,
C.
,
Robert
,
A.
,
Bricault
,
I.
, and
Cinquin
,
P.
,
2011
, “
Interventional Radiology Robot for CT and MRI-Guided Percutaneous Interventions
,” Medical Image Computing and Computer-Assisted Intervention, pp.
137
144
.
15.
Abdelaziz
,
S.
,
Esteveny
,
L.
,
Renaud
,
P.
,
Bayle
,
B.
, and
de Mathelin
,
M.
,
2011
, “
Design and Optimization of a Novel MRI Compatible Wire-Driven Robot for Prostate Cryoablation
,”
ASME
Paper No. DETC2011-48092.10.1115/DETC2011-48092
16.
Ebert-Uphoff
,
I.
, and
Voglewede
,
P.
,
2004
, “
On the Connections Between Cable-Driven Robots, Parallel Manipulators, and Grasping
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr., pp.
4521
4526
.
17.
Bosscher
,
P.
,
Riechel
,
A.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.10.1109/TRO.2006.878967
18.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
.10.1115/1.2121741
19.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.10.1109/TRO.2010.2090064
20.
Gouttefarde
,
M.
,
Krut
,
S.
,
Company
,
O.
,
Pierrot
,
F.
, and
Ramdani
,
N.
,
2008
, “
On the Design of Fully Constrained Parallel Cable-Driven Robots
,” Advances in Robot Kinematics: Analysis and Design, Batz-sur-Mer, France, June, pp.
71
78
.
21.
Bouchard
,
S.
,
2008
, “
Géometrie des robots parallèles entraînes par des cables
,” Ph.D. thesis, Université Laval, Québec, Canada.
22.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2009
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), pp.
1
10
.10.1115/1.4000558
23.
Abdelaziz
,
S.
,
Esteveny
,
L.
,
Barbe
,
L.
,
Renaud
,
P.
,
Bayle
,
B.
, and
de Mathelin
,
M.
,
2012
, “
Development of a MR-Compatible Cable-Driven Manipulator: Design and Technological Issues
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, St. Paul, MN, May, pp.
1488
1494
.
24.
Accessed in 2014, MRI-Compatible Fiber Optic Incremental Encoder. Available at: http://www.micronor.com/products/files/MR328/MDS_MR328.pdf
25.
Zisman
,
A.
,
Pantuck
,
A. J.
,
Cohen
,
J. K.
, and
Belldegrun
,
A. S.
,
2001
, “
Prostate Cryoablation Using Direct Transperineal Placement of Ultrathin Probes Through a 17-Gauge Brachytherapy Template-Technique and Preliminary Results
,”
Urology
,
58
(6), pp.
988
993
.10.1016/S0090-4295(01)01422-4
26.
Abdelaziz
,
S.
,
Esteveny
,
L.
,
Renaud
,
P.
,
Bayle
,
B.
,
Barbé
,
L.
,
De Mathelin
,
M.
, and
Gangi
,
A.
,
2011
, “
Design Considerations for a Novel MRI Compatible Manipulator for Prostate Cryoablation
,”
Int. J. Comput. Assisted Radiol. Surg.
,
6
(
6
), pp.
811
819
.10.1007/s11548-011-0558-4
27.
Moore
,
R. E.
,
1979
, “
Methods and Applications of Interval Analysis
,” Studies in Applied Mathematics, SIAM.
28.
Hao
,
F.
, and
Merlet
,
J. P.
,
2005
, “
Multi-Criteria Optimal Design of Parallel Manipulators Based on Interval Analysis
,”
J. Mech. Mach. Theory
,
40
(
2
), pp.
157
171
.10.1016/j.mechmachtheory.2004.07.002
29.
Accessed in 2014, Matlab Toolbox for Reliable Computing and Self-Validating Algorithms. Available at: http://www.ti3.tuharburg.de/rump/intlab/
30.
Accessed in 2014, Tracking System for MRI Guided Interventions. Available at: http://www.robinmedical.com/endoscout.html
31.
Kesner
,
S.
, and
Howe
,
R.
,
2011
, “
Design Principles for Rapid Prototyping Forces Sensors Using 3-D Printing
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
866
870
.10.1109/TMECH.2011.2160353
32.
Ataollahi
,
A.
,
Fallah
,
A.
,
Seneviratne
,
L.
,
Dasgupta
,
P.
, and
Althoefer
,
K.
,
2014
, “
Novel Force Sensing Approach Employing Prismatic-Tip Optical Fiber Inside an Orthoplanar Spring Structure
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
121
130
.10.1109/TMECH.2012.2222906
You do not currently have access to this content.