Extending the method coined virtual-center-based (VCB) for synthesizing a group of deployable platonic mechanisms with radially reciprocating motion by implanting dual-plane-symmetric 8-bar linkages into the platonic polyhedron bases, this paper proposes for the first time a more general single-plane-symmetric 8-bar linkage and applies it together with the dual-plane-symmetric 8-bar linkage to the synthesis of a family of one-degree of freedom (DOF) highly overconstrained deployable polyhedral mechanisms (DPMs) with radially reciprocating motion. The two 8-bar linkages are compared, and geometry and kinematics of the single-plane-symmetric 8-bar linkage are investigated providing geometric constraints for synthesizing the DPMs. Based on synthesis of the regular DPMs, synthesis of semiregular and Johnson DPMs is implemented, which is illustrated by the synthesis and construction of a deployable rectangular prismatic mechanism and a truncated icosahedral (C60) mechanism. Geometric parameters and number synthesis of typical semiregular and Johnson DPMs based on the Archimedean polyhedrons, prisms and Johnson polyhedrons are presented. Further, movability of the mechanisms is evaluated using symmetry-extended rule, and mobility of the mechanisms is verified with screw-loop equation method; in addition, degree of overconstraint of the mechanisms is investigated by combining the Euler's formula for polyhedrons and the Grübler–Kutzbach formula for mobility analysis of linkages. Ultimately, singular configurations of the mechanisms are revealed and multifurcation of the DPMs is identified. The paper hence presents an intuitive and efficient approach for synthesizing PDMs that have great potential applications in the fields of architecture, manufacturing, robotics, space exploration, and molecule research.

References

References
1.
Bricard
,
R.
,
1927
,
Leçons des cinematique
, Vol.
2
.
Gauthier-Villars et cie
,
Paris
.
2.
Verheyen
,
H. F.
,
1984
, “
Expandable Polyhedral Structures Based on Dipolygonids
,”
Proceedings of 3rd International Conference on Space Structures, Elsevier
, London, UK, pp.
88
93
.
3.
Verheyen
,
H. F.
,
1989
, “
The Complete Set of Jitterbug Transformers and the Analysis of Their Motion
,”
Comput. Math. Appl.
,
17
(
1–3
), pp.
203
250
.10.1016/0898-1221(89)90160-0
4.
Fuller
,
R. B.
,
1975
,
Synergetics: Exploration in the Geometry of Thinking
,
Macmillan
,
New York
.
5.
Bricard
,
R.
,
1897
, “
Mémoire sur la théorie de l'octaèdre articulé
,”
J. Math. Pure Appl. Liouville
,
3
, pp.
113
148
.
6.
Goldberg
,
M.
,
1942
, “
Polyhedral Linkages
,”
Natl. Math. Mag.
,
16
(
7
), pp.
323
332
.10.2307/3028440
7.
Röschel
,
O.
,
2000
, “
Möbius Mechanisms
,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
M.
Stanišić
, eds.,
Kluwer Akademie Publisher
, Amsterdam, Netherlands, pp.
375
382
.
8.
Stachel
,
H.
,
1994
, “
The Heureka-Polyhedron
,”
Intuitive Geometry (Bolyai Society Mathematical Studies)
, Vol.
63
,
G.
Fejes Tóth
, ed.,
North-Holland
, Amsterdam, Netherlands, pp.
447
459
.
9.
Guest
,
S. D.
,
1994
, “
Deployable Structures: Concepts and Analysis
,” Ph.D. thesis, Corpus Christi College, University of Cambridge, Cambridge, UK.
10.
Wohlhart
,
K.
,
1993
. “
Heureka Octahedron and Brussels Folding Cube as Special Cases of the Turning Tower
,”
Proceedings of the 6th IFToMM International Symposium on Linkages and Computer Aided Design Methods
, Bucharest, Romania, June 1–5, pp.
303
132
.
11.
Wohlhart
,
K.
,
1995
. “
New Overconstrained Spheroidal Linkages
,”
Proceedings the 9th World Congress on the Theory of Machines and Mechanisms
, Milano, Italy, August 29–September 2, pp.
149
154
.
12.
Wohlhart
,
K.
,
1997
, “
Kinematics and Dynamics of the Fulleroid
,”
Multibody Syst. Dyn.
,
1
, pp.
241
258
.10.1023/A:1009768921348
13.
Wohlhart
,
K.
,
1998
. “
Kinematics of Röschel Polyhedra
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarčič
, and
M.
Husty
, eds.,
Kluwer Akademie Publisher
, Amsterdam, Netherlands, pp.
277
286
.
14.
Wohlhart
,
K.
,
1999
, “
Deformable Cages
,”
10th World Congress on the Theory of Machines and Mechanisms
, Oulu, Finland, June 20–24, 1999, pp.
683
688
.
15.
Wohlhart
,
K.
,
2008
, “
Double-Ring Polyhedral Linkages
,”
Proceedings of Interdisciplinary Applications of Kinematics
, Peru, Lima, January 9–11, pp.
1
17
.
16.
Wohlhart
,
K.
,
2008
, “
New Polyhedral Star Linkages
,”
Proceedings of the 10th International Conference on the Theory of Machines and Mechanisms, Liberec, Czech, September 2–4
.
17.
Hoberman
,
C.
,
2004
, “
Geared Expanding Structures
,” U.S. Patent No. 7, 464, 503 B2.
18.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q. X.
, and
Jin
,
G.
,
2004
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
,
39
(
4
), pp.
445
458
.10.1016/j.mechmachtheory.2003.12.004
19.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.10.1115/1.4001730
20.
Agrawal
,
S. K.
,
Kumar
,
S.
, and
Yim
,
M.
,
2002
, “
Polyhedral Single Degree-of Freedom Expanding Structures: Design and Prototypes
,”
ASME J. Mech. Des.
,
124
(
9
), pp.
473
478
.10.1115/1.1480413
21.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
,
1995
, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
J. Mech. Eng. Sci. Part C
,
209
(
3
), pp.
263
271
.10.1243/PIME_PROC_1995_209_153_02
22.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.10.1115/1.1901708
23.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Screw System Analysis of Parallel Mechanisms and Applications to Constraint and Mobility Study
,”
28th ASME Biennial Mechanisms and Robotics Conference
, Salt Lake City, Utah, September 28–October 2, Paper No. DETC2004-57604.
24.
Dai
,
J. S.
,
2014
, “Geometrical Foundation and Screw Algebra for Mechanisms and Robotics, Higher Education,” Beijing [Dai, J. S., 2014, Screw Algebra and Kinematic Approach for Mechanisms and Robotics, Springer, London, UK (in Chinese)].
25.
Gosselin
,
C. M.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Expandable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,”
J. Mech. Eng. Sci. Part C
,
220
, pp.
1011
1018
.10.1243/09544062JMES174
26.
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
, “
Polyhedra With Articulated Faces
,”
Proceedings of the 12th IFToMM World Congress Besancon, France, June 17–21
.
27.
Kiper
,
G.
,
2009
, “
Fulleroid-Like Linkages
,”
Proceedings of EUCOMES 08
,
M.
Ceccarelli
, ed., Cassino, Italy, Sept. 17–20, pp.
423
430
.
28.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kisisel
,
A. U. O.
,
2007
, “
Polyhedral Linkages Synthesized Using Cardan Motion Along Radial Axes
,”
Proceedings of the 12th IFToMM World Congress
, Besancon, France, June 17–21.
29.
Röschel
,
O.
,
2012
, “
Overconstrained Mechanisms Based on Trapezohedra
,”
Proceedings of the 15th International Conference on Geometry and Graphics (ICGG)
, Montreal, Canada, August 1–5, pp.
629
637
.
30.
Röschel
,
O.
,
1995
, “
Zwangläufig bewegliche polyedermodelle i
,”
Math. Pannonica
,
6
, pp.
267
284
.
31.
Röschel
,
O.
,
1996
, “
Zwangläufig bewegliche polyedermodelle ii
,”
Studia Sci. Math. Hung.
,
32
, pp.
383
393
.
32.
Röschel
,
O.
,
2001
, “
Zwangläufig bewegliche polyedermodelle iii
,”
Math. Pannonica
,
12
, pp.
55
68
.
33.
Wei
,
X.
,
Yao
,
Y.
,
Tian
,
Y.
, and
Fang
,
R.
,
2006
, “
A New Method of Creating Expandable Structure
,”
J. Mech. Eng. Sci. Part C
,
220
, pp.
1813
1818
.10.1243/0954406JMES406
34.
Kovács
,
F.
,
Tarnai
,
T.
,
Fowler
,
P. W.
, and
Guest
,
S. D.
,
2004
, “
A Class of Expandable Polyhedral Structures
,”
Int. J. Solids Struct.
,
41
, pp.
1119
1137
.10.1016/j.ijsolstr.2003.09.046
35.
Wei
,
G.
,
Dai
,
J. S.
,
2010
, “
Overconstrained Mechanisms With Radially Reciprocating Motion
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
, and
M.
Stanišić
, eds.,
Springer
, Amsterdam, Netherlands, pp.
293
300
.
36.
Wei
,
G.
,
Dai
,
J. S.
,
2012
, “
Synthesis of a Family of Regular Deployable Polyhedral Mechanisms
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
, and
M.
Husty
, eds.,
Springer
, Amsterdam, Netherlands, pp.
123
130
.
37.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Synthesis and Construction of a Family of one-DOFG Highly Overconstrained Deployable Polyhedral Mechanisms (DPMs)
,”
Conference Proceeding of Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, USA, August 12–15.
38.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.10.1115/1.4025472
39.
Lipkin
,
H.
,
2005
, “
A Note on Denavit-Hartenberg Notation in Robotics
,”
In ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, California, USA, September 24–28, 2005.
40.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT
, Cambridge MA.
41.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6R Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031004
.10.1115/1.4004225
42.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.10.1115/1.4025821
43.
Guest
,
S. D.
, and
Fowler
,
P. W.
,
2005
, “
A Symmetry-Extended Mobility Rule
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1002
1014
.10.1016/j.mechmachtheory.2004.12.017
44.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles Motion
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041002
.10.1115/1.4006951
45.
Kroto
,
H. W.
,
Heath
,
J. R.
,
O'Brien
,
S. C.
,
Curl
,
R. F.
, and
Smalley
,
R. E.
,
1985
, “
C60: Buckminsterfullerene
,”
Nature
,
318
, pp.
162
163
.10.1038/318162a0
46.
Cromwell
,
P. R.
,
1997
,
Polyhedra
,
Cambridge University
,
Cambridge
, UK.
47.
Zhao
,
J.-S.
,
Zhou
,
K.
, and
Feng
,
Z.-J.
,
2004
, “
A Theory of Degrees of Freedom for Mechanisms
,”
Mech. Mach. Theory
,
39
(
6
), pp.
621
643
.10.1016/j.mechmachtheory.2003.12.005
48.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051001
.10.1115/1.4003920
49.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Atatically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
, pp.
409
428
.10.1016/0020-7683(86)90014-4
50.
Fowler
,
P. W.
, and
Guest
,
S. D.
,
2000
, “
A Symmetry Extension of Maxwells Rule for Rigidity of Frames
,”
Int. J. Solids Struct.
,
37
, pp.
1793
1804
.10.1016/S0020-7683(98)00326-6
51.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Generalized Eigenvalue Analysis of Symmetric Prestressed Structures Using Group Theory
,”
J. Comput. Civil Eng.
,
26
(
4
), pp.
488
497
.10.1061/(ASCE)CP.1943-5487.0000151
52.
Chen
,
Y.
, and
Feng
,
J.
,
2014
, “
Efficient Method for the Moore-Penrose Inverse Problems Involving Symmetric Structures Based on Group Theory
,”
J. Comput. Civil Eng.
,
28
(
2
), pp.
182
190
.10.1061/(ASCE)CP.1943-5487.0000266
53.
Chen
,
Y.
,
Guest
,
S. D.
,
Fowler
,
P. W.
, and
Feng
,
J.
,
2012
, “
Two-Orbit Switch-Pitch Structures
,”
J. Int. Assoc. Shell Spatial Struct.
,
53
, pp.
157
162
.
You do not currently have access to this content.