Identifying biological analogies is a significant challenge in biomimetic (biologically inspired) design. This paper builds on our previous work on finding biological phenomena in natural-language text. Specifically, a rule-based computational technique is used to identify biological analogies that contain causal relations. Causally related functions describe how one function is enabled by another function, and support the transfer of functional structure from analogies to design solutions. The causal-relation retrieval method uses patterns of syntactic information that represent causally related functions in individual sentences, and scored F-measures of 0.73–0.85. In a user study, novice designers found that of the total search matches, proportionally more of the matches obtained with the causal-relation retrieval method were relevant to design problems than those obtained with a single verb-keyword search. In addition, matches obtained with the causal-relation retrieval method increased the likelihood of using functional association to develop design concepts. Finally, the causal-relation retrieval method enables automatic extraction of biological analogies at the sentence level from a large amount of natural-language sources, which could support other approaches to biologically inspired design that require the identification of interesting biological phenomena.

References

1.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
,
2004
, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.10.1115/1.1899690
2.
Bejgerowski
,
W.
,
Gupta
,
S. K.
,
Ananthanarayanan
,
A.
, and
Mueller
,
D.
,
2009
, “
Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061006
.10.1115/1.3116258
3.
Stanford
,
B.
, and
Beran
,
P.
,
2012
, “
Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051007
.10.1115/1.4006438
4.
Egan
,
P. F.
,
Cagan
,
J.
,
Schunn
,
C.
, and
LeDuc
,
P. R.
,
2013
, “
Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure–Behavior–Function Representations
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061005
.10.1115/1.4024227
5.
Bandi
,
P.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2013
, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091002
.10.1115/1.4024722
6.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2012
, “
A Co-Evolution Model for Prediction and Synthesis of New Products and Manufacturing Systems
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051008
.10.1115/1.4006439
7.
Ueda
,
K.
,
Hatono
,
I.
,
Fujii
,
N.
, and
Vaario
,
J.
,
2001
, “
Line-Less Production System Using Self-Organization: A Case Study for BMS
,”
CIRP Ann.
,
50
(
1
), pp.
319
322
.10.1016/S0007-8506(07)62130-1
8.
Shu
,
L. H.
,
2010
, “
A Natural-Language Approach to Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
507
519
.10.1017/S0890060410000363
9.
Shu
,
L. H.
,
Ueda
,
K.
,
Chiu
,
I.
, and
Cheong
,
H.
,
2011
, “
Biologically Inspired Design
,”
CIRP Ann.
,
60
(
2
), pp.
673
693
.10.1016/j.cirp.2011.06.001
10.
Chiu
,
I.
, and
Shu
,
L. H.
,
2007
, “
Biomimetic Design Through Natural Language Analysis to Facilitate Cross-Domain Information Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
(
1
), pp.
45
59
.10.1017/S0890060407070138
11.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
027007
.10.1115/1.4003249
12.
Ke
,
J.
,
Wallace
,
J. S.
, and
Shu
,
L. H.
,
2009
, “
Supporting Biomimetic Design Through Categorization of Natural-Language Keyword-Search Results
,”
Proceedings of ASME IDETC
,
San Diego CA
, Aug. 30–Sept. 2, Paper No. DETC2009-86681.
13.
Ke
,
J.
,
Chiu
,
I.
,
Wallace
,
J. S.
, and
Shu
,
L. H.
,
2010
, “
Supporting Biomimetic Design by Embedding Metadata in Natural-Language Corpora
,”
Proceedings of ASME IDETC
,
Montreal, Canada
, Aug. 15–18, Paper No. DETC2010-29057.
14.
Cheong
,
H.
, and
Shu
,
L. H.
,
2013
, “
Using Templates and Mapping Strategies to Support Analogical Transfer in Biomimetic Design
,”
Des. Stud.
,
34
, pp.
706
728
.10.1016/j.destud.2013.02.002
15.
Cheong
,
H.
, and
Shu
,
L. H.
,
2012
, “
Automatic Extraction of Causally Related Functions From Natural-Language Text for Biomimetic Design
,”
Proceedings of ASME IDETC
,
Chicago, IL
, Aug. 12–15, Paper No. DETC2012-70732.
16.
Biomimicry Institute
,
2008
, “
Ask Nature: The Biomimicry Design Portal
,” last accessed at http://www.asknature.org
17.
Vincent
,
J. F. V.
, and
Mann
,
D. L.
,
2002
, “
Systematic Technology Transfer From Biology to Engineering
,”
Philos. Trans. R. Soc. A: Phys. Sci.
,
360
(
1791
), pp.
159
173
.10.1098/rsta.2001.0923
18.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M.
,
2011
, “
Cognitive, Collaborative, Conceptual and Creative—Four Characteristics of the Next Generation of Knowledge-Based CAD Systems: A Study in Biologically Inspired Design
,”
Comput.-Aided Des.
,
44
(
10
), pp.
879
900
.10.1016/j.cad.2011.03.010
19.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.10.1017/S0890060409000080
20.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
21.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
,
2010
, “
A Methodology for Supporting ‘Transfer’ in Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
483
505
.10.1017/S0890060410000351
22.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
,
2008
, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
,
130
(
12
),
p. 121102
.10.1115/1.2992062
23.
Vandevenne
,
D.
,
Verhaegen
,
P -A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2012
, “
Automatically Populating the Biomimicry Taxonomy for Scalable Systematic Biologically-Inspired Design
,”
Proceedings of ASME IDETC
,
Chicago IL
, Aug. 12–15, Paper No. DETC2012-70928.
24.
Vattam
,
S.
, and
Goel
,
A.
,
2011
, “
Foraging for Inspiration: Understanding and Supporting the Information Seeking Practices of Biologically Inspired Designers
,”
Proceedings of ASME IDETC
,
Washington DC
, Aug. 28–31, Paper No. DETC2011-48238.
25.
Hacco
,
E.
, and
Shu
,
L. H.
,
2002
, “
Biomimetic Concept Generation Applied to Design for Remanufacture
,”
Proceedings of ASME IDETC
,
Montreal, Canada
, Sept. 29–Oct. 2, Paper No. DETC2002-34177.
26.
Mak
,
T. W.
, and
Shu
,
L. H.
,
2008
, “
Using Descriptions of Biological Phenomena for Idea Generation
,”
Res. in Eng. Des.
,
19
(
1
), pp.
21
28
.10.1007/s00163-007-0041-y
27.
Cheong
,
H.
,
Shu
,
L. H.
,
2013
, “
Reducing Cognitive Bias in Biomimetic Design by Abstracting Nouns
,”
CIRP Ann.
,
62
(
1
), pp.
111
114
.10.1016/j.cirp.2013.03.064
28.
Cheong
,
H.
,
Hallihan
,
G.
, and
Shu
,
L. H.
,
2014
, “
Design Problem Solving With Biological Analogies
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
28
(
1
), pp.
27
47
.10.1017/S0890060413000486
29.
Miller
,
G. A.
,
1995
, “
WordNet: A Lexical Database for English
,”
Commun. ACM
,
35
(
11
), pp.
39
41
.10.1145/219717.219748
30.
Altshuller
,
G.
,
1984
,
Creativity as an Exact Science
,
Gordon & Breach
,
New York NY
.
31.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
369
.10.1115/1.1289637
32.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cognit. Sci.
,
7
(
2
), pp.
155
170
.10.1207/s15516709cog0702_3
33.
Clement
,
C. A.
,
Gentner
,
D.
,
1991
, “
Systematicity as a Selection Constraint in Analogical Mapping
,”
Cognit. Sci.
,
15
(
1
), pp.
89
132
.10.1207/s15516709cog1501_3
34.
Markman
,
A. B.
, and
Gentner
,
D.
,
1993
, “
Structural Alignment During Similarity Comparisons
,”
Cognit. Sci.
,
25
(
4
), pp.
431
467
.10.1006/cogp.1993.1011
35.
Gentner
,
D.
,
Rattermann
,
M. J.
, and
Forbus
,
K. D.
,
1993
, “
The Roles of Similarity in Transfer: Separating Retrievability From Inferential Soundness
,”
Cognit. Psychol.
,
25
(
4
), pp.
524
575
.10.1006/cogp.1993.1013
36.
Holyoak
,
K. J.
, and
Thagard
,
P.
,
1989
, “
Analogical Mapping by Constraint Satisfaction
,”
Cognit. Sci.
,
13
(
3
), pp.
295
355
.10.1207/s15516709cog1303_1
37.
Garcia
,
D.
,
1997
, “
COATIS, an NLP System to Locate Expressions of Actions Connected by Causality Links
,”
Proceedings of Knowledge Acquisition, Modeling and Management, 10th European Workshop
, pp.
347
352
.
38.
Khoo
,
C.
,
Chan
,
S.
, and
Niu
,
Y.
,
2000
, “
Extracting Causal Knowledge From a Medical Database Using Graphical Patterns
,”
Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics
.
39.
Girju
,
R.
,
2003
, “
Automatic Detection of Causal Relations for Question Answering
,”
Proceedings of the ACL 2003 Workshop on Multilingual Summarization and Question Answering
, pp.
76
83
.
40.
de Marneffe
,
M -C.
,
MacCartney
,
B.
, and
Manning
,
C. D.
,
2006
, “
Generating Typed Dependency Parses From Phrase Structure Parses
,”
Proceedings of International Conference on Language Resources and Evaluation
.
41.
Marcus
,
M. P.
,
Santorini
,
B.
, and
Marcinkiewicz
,
M. A.
,
1993
, “
Building a Large Annotated Corpus of English: The Penn Treebank
,”
Assoc. Comput. Linguist.
,
19
(
2
), pp.
313
330
.10.1.1.14.9706
42.
Cer
,
D.
,
de Marneffe
,
M -C.
,
Jurafsky
,
D.
, and
Manning
,
C. D.
,
2010
, “
Parsing to Stanford Dependencies: Trade-Offs Between Speed and Accuracy
,”
Proceedings of International Conference on Language Resources and Evaluation
.
43.
Charniak
,
E.
, and
Johnson
,
M.
,
2005
, “
Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking
,”
Proceedings of the 43rd Annual Meeting of the ACL
, pp.
173
180
.
44.
Purves
,
W. K.
,
Sadava
,
D.
,
Orians
,
G. H.
, and
Heller
,
H. C.
,
2001
,
Life, The Science of Biology
, 6th ed.,
Sinauer Associates
,
Sunderland, MA
.
45.
Jurafsky
,
D.
, and
Martin
,
J. H.
,
2009
,
Speech and Language Processing
, 2nd ed.,
Pearson Prentice-Hall
, Upper Saddle River, New Jersey.
46.
Manning
,
C.
, and
Schütze
,
H.
,
1999
,
Foundations of Statistical Natural Language Processing
,
MIT Press
,
Cambridge, MA
.
47.
Lodish
,
H.
,
Berk
,
A.
,
Zipursky
,
S. L.
,
Matsudaira
,
P.
,
Baltimore
,
D.
, and
Darnell
,
J.
,
2000
,
Molecular Cell Biology
, 4th ed.,
W. H. Freeman
,
New York
.
48.
Borsci
,
S.
, and
Federici
,
S.
,
2009
, “
The Partial Concurrent Thinking Aloud: A New Usability Evaluation Technique for Blind Users
,”
Assistive Technology From Adapted Equipment to Inclusive Environments
,
P. L.
Emiliani
,
L.
Burzagli
,
A.
Como
,
F.
Gabbanini
, and
A. L.
Salminen
, eds.,
IOS Press
, Amsterdam, the Netherlands, pp.
421
425
.
49.
Ozkan
,
O.
, and
Dogan
,
F.
,
2013
, “
Cognitive Strategies of Analogical Reasoning in Design: Differences Between Expert and Novice Designers
,”
Des. Stud.
,
34
(
2
), pp.
161
192
.10.1016/j.destud.2012.11.006
50.
Delucchi
,
K. L.
, and
Bostrom
,
A.
,
2004
, “
Methods for Analysis of Skewed Data Distributions in Psychiatric Clinical Studies: Working With Many Zero Values
,”
Am. J. Psychiatry
,
161
(
7
), pp.
1159
1168
.10.1176/appi.ajp.161.7.1159
You do not currently have access to this content.