The design of unconventional systems requires early use of high-fidelity physics-based tools to search the design space for improved and potentially optimum designs. Current methods for incorporating these computationally expensive tools into early design for the purpose of reducing uncertainty are inadequate due to the limited computational resources that are available in early design. Furthermore, the lack of finite difference derivatives, unknown design space properties, and the possibility of code failures motivates the need for a robust and efficient global optimization (EGO) algorithm. A novel surrogate model-based global optimization algorithm capable of efficiently searching challenging design spaces for improved designs is presented. The algorithm, called fBcEGO for fully Bayesian constrained EGO, constructs a fully Bayesian Gaussian process (GP) model through a set of observations and then uses the model to make new observations in promising areas where improvements are likely to occur. This model remedies the inadequacies of likelihood-based approaches, which may provide an incomplete inference of the underlying function when function evaluations are expensive and therefore scarce. A challenge in the construction of the fully Bayesian GP model is the selection of the prior distribution placed on the model hyperparameters. Previous work employs static priors, which may not capture a sufficient number of interpretations of the data to make any useful inferences about the underlying function. An iterative method that dynamically assigns hyperparameter priors by exploiting the mechanics of Bayesian penalization is presented. fBcEGO is incorporated into a methodology that generates relatively few infeasible designs and provides large reductions in the objective function values of design problems. This new algorithm, upon implementation, was found to solve more nonlinearly constrained algebraic test problems to higher accuracies relative to the global minimum than other popular surrogate model-based global optimization algorithms and obtained the largest reduction in the takeoff gross weight objective function for the case study of a notional 70-passenger regional jet when compared with competing design methods.

References

References
1.
Raymer
,
D. P.
,
2006
,
Aircraft Design: A Conceptual Approach
,
4th ed.
,
AIAA Education Series, American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Rawson
,
K.
, and
Tupper
,
E.
,
2001
,
Basic Ship Theory: Volume 1
,
5th ed.
,
Butterworth-Heinemann
,
Boston, MA
.
3.
Drela
,
M.
, and
Youngren
,
H.
,
2001
,
XFOIL 6.94
, Cambridge, MA, http://web.mit.edu/drela/Public/web/xfoil/
4.
Rogers
,
S. E.
,
Roth
,
K.
,
Cao
,
H. V.
,
Slotnick
,
J. P.
,
Whitlock
,
M.
,
Nash
,
S. M.
, and
Baker
,
M. D.
,
2001
, “
Computation of Viscous Flow for a Boeing 777 Aircraft in Landing Configuration
,”
J. Aircraft
,
38
(
6
), pp.
1060
1068
.10.2514/2.2873
5.
Rizzi
,
A.
,
2011
, “
Modeling and Simulation Aircraft Stability and Control—The SimSAC Project
,”
Prog. Aerosp. Sci.
,
47
(
8
), pp.
573
588
.10.1016/j.paerosci.2011.08.004
6.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
7.
Forrester
,
A. I. J.
,
2004
, “
Efficient Global Aerodynamic Optimisation Using Expensive Computational Fluid Dynamics Simulations
,” Ph.D. thesis, University of Southampton, Southampton, UK.
8.
Alexandrov
,
N.
,
Lewis
,
R.
,
Gumbert
,
C.
,
Green
,
L.
, and
Newman
,
P.
,
2000
, “
Optimization With Variable-Fidelity Models Applied to Wing Design
,”
38th Aerospace Sciences Meeting & Exhibit
, Reno, NV, Paper No. AIAA-2000-0841.
9.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.
,
2004
, “
A Pattern Search Filter Method for Nonlinear Programming Without Derivatives
,”
SIAM J. Optim.
,
14
(
4
), pp.
980
1010
.10.1137/S105262340138983X
10.
Mason
,
W.
,
Knill
,
D.
,
Giunta
,
A.
,
Grossman
,
B.
, and
Watson
,
L.
,
1998
, “
Getting the Full Benefits of CFD in Conceptual Design
,”
16th AIAA Applied Aerodynamics Conference
, Albuquerque, NM, Paper No. AIAA 98-2513.
11.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2002
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons, Inc.
,
New York
.
12.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.10.1023/A:1012771025575
13.
Keane
,
A. J.
, and
Nair
,
P. B.
,
2005
,
Computational Approaches for Aerospace Design: The Pursuit of Excellence
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
.
14.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling—A Practical Guide
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
15.
Osborne
,
M. A.
,
2010
, “
Bayesian Gaussian Processes for Sequential Prediction, Optimisation, and Quadrature
,” Ph.D. thesis, University of Oxford, Oxford, UK.
16.
Benassi
,
R.
,
Bect
,
J.
, and
Vazquez
,
E.
,
2011
, “
Robust Gaussian Process-Based Global Optimization Using a Fully Bayesian Expected Improvement Criterion
,”
5th International Conference on Learning and Intelligent Optimization (LION 5)
, C. A. C. Coello, ed., Vol.
6683
of Lecture Notes in Computer Science,
Springer-Verlag
,
Berlin
, pp.
176
190
.
17.
Conn
,
A. R.
,
Scheinberg
,
K.
, and
Vicente
,
L. N.
,
2009
,
Introduction to Derivative-Free Optimization
,
SIAM
,
Philadelphia, PA
.
18.
Conn
,
A. R.
,
Gould
,
N. I.
, and
Toint
,
P. L.
,
2000
,
Trust-Region Methods
,
SIAM
,
Philadelphia, PA
.
19.
Vaz
,
A. F.
, and
Vicente
,
L. N.
,
2007
, “
A Particle Swarm Pattern Search Method for Bound Constrained Global Optimization
,”
J. Global Optim.
,
39
(
2
), pp.
197
219
.10.1007/s10898-007-9133-5
20.
Digabel
,
S. L.
,
2011
, “
Algorithm 909: NOMAD: Nonlinear Optimization With the MADS Algorithm
,”
ACM Trans. Math. Software
,
37
(
4
), pp.
44:1
44:15
.10.1145/1916461.1916468
21.
Schonlau
,
M.
,
Welch
,
W.
, and
Jones
,
D. R.
,
1998
, “
Global Versus Local Search in Constrained Optimization of Computer Models
,”
New Developments and Applications in Experimental Design
, Vol.
34
,
N.
Flournoy
,
W. F.
Rosenberger
, and
W. K.
Wong
, eds.,
Institute of Mathematical Statistics
,
Hayward, CA
, pp.
11
25
.
22.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
23.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
24.
Rasmussen
,
C.
, and
Ghahramani
,
Z.
,
2003
, “
Bayesian Monte Carlo
,”
Advances in Neural Information Processing Systems
, Vol.
15
, S. Becker, S. Thrun, and K. Obermayer, eds.,
MIT Press
,
Cambridge, MA
, pp.
505
512
.
25.
Osborne
,
M. A.
,
Garnett
,
R.
, and
Roberts
,
S. J.
,
2009
, “
Gaussian Processes for Global Optimization
,”
3rd International Conference on Learning and Intelligent Optimization (LION3)
, Trento, Italy.
26.
Handcock
,
M. S.
, and
Stein
,
M. L.
,
1993
, “
A Bayesian Analysis of Kriging
,”
Technometrics
,
35
(
4
), pp.
403
410
.10.1080/00401706.1993.10485354
27.
Koullias
,
S.
,
2013
, “
Methodology for Global Optimization of Computationally Expensive Design Problems
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
28.
MacKay
,
D. J.
,
2003
,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
29.
Jones
,
D.
,
Perttunen
,
C.
, and
Stuckman
,
B.
,
1993
, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
,
79
(
1
), pp.
157
181
.10.1007/BF00941892
30.
Quttineh
,
N.-H.
, and
Holmström
,
K.
,
2009
, “
The Influence of Experimental Designs on the Performance of Surrogate Model Based Costly Global Optimization Solvers
,”
Stud. Inf. Control
,
18
(
1
), pp.
87
95
.
31.
O'Hara
,
J. J.
,
Stump
,
G. M.
,
Yukish
,
M. A.
,
Harris
,
E. N.
,
Hanowski
,
G. J.
, and
Carty
,
A.
,
2007
, “
Advanced Visualization Techniques for Trade Space Exploration
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, April 23–26, pp.
1
6
, Paper No. AIAA 2007-1878.
32.
Holden
,
C. M.
, and
Keane
,
A. J.
,
2004
, “
Visualization Methodologies in Aircraft Design
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, 30 Aug.–1 Sept., pp.
1
13
, Paper No. AIAA 2004-4449.
33.
Khompatraporn
,
C.
,
Zabinsky
,
Z. B.
, and
Pintér
,
J. D.
,
2005
, “
Comparative Assessment of Algorithms and Software for Global Optimization
,”
J. Global Optim.
,
31
(
4
), pp.
613
633
.10.1007/s10898-004-9971-3
34.
Floudas
,
C.
, and
Pardalos
,
P.
,
1990
,
A Collection of Test Problems for Constrained Global Optimization Algorithms (Lecture Notes in Computer Science)
Vol.
455
,
Springer-Verlag
,
Berlin, Germany
.
35.
Floudas
,
C. A.
,
Pardalos
,
P. M.
,
Adjiman
,
C. S.
,
Esposito
,
W. R.
,
Gümüs
,
Z. H.
,
Harding
,
S. T.
,
Klepeis
,
J. L.
,
Meyer
,
C. A.
, and
Schweiger
,
C. A.
,
1999
,
Handbook of Test Problems in Local and Global Optimization
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
36.
Hock
,
W.
, and
Schittkowski
,
K.
,
1981
,
Test Examples for Nonlinear Programming Codes
,
Springer-Verlag
,
Berlin
.
37.
Sasena
,
M.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Global Optimization of Problems With Disconnected Feasible Regions via Surrogate Modeling
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Atlanta, GA, Paper No. AIAA-2002-5573.
38.
Moré
,
J. J.
, and
Wild
,
S. M.
,
2009
, “
Benchmarking Derivative-Free Optimization Algorithms
,”
SIAM J. Optim.
,
20
(
1
), pp.
172
191
.10.1137/080724083
39.
Quttineh
,
N.-H.
, and
Holmström
,
K.
,
2009
,
Implementation of a One-Stage Efficient Global Optimization (EGO) Algorithm, Mälardalen University, School of Education, Culture and Communication
, Technical Report, Research Reports MDH/UKK 2009-2, http://www.mai.liu.se/~niqut/publications.html
40.
Gutmann
,
H.
,
2001
, “
A Radial Basis Function Method for Global Optimization
,”
J. Global Optim.
,
19
(
3
), pp.
201
227
.10.1023/A:1011255519438
41.
Regis
,
R. G.
, and
Shoemaker
,
C. A.
,
2005
, “
Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions
,”
J. Global Optim.
,
31
(
1
), pp.
153
171
.10.1007/s10898-004-0570-0
42.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
2nd ed.
,
Springer
,
New York
.
43.
Vanderplaats
,
G. N.
,
2005
,
Numerical Optimization Techniques for Engineering Design
,
4th ed.
,
Garret N. Vanderplaats
,
Colorado Springs, CO
.
44.
Jones
,
D. R.
,
2009
, “
Direct Global Optimization Algorithm
,”
Encyclopedia of Optimization
,
2nd ed.
,
C. A.
Floudas
and
P. M.
Pardalos
, eds.,
Springer
,
New York
, pp.
725
735
.
45.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds.,
1972
, Handbook of Mathematical Functions,
10th ed.
, Vol.
55
,
(Applied Mathematics Series), National Bureau of Standards
,
New York
.
46.
Cox
,
S. E.
,
Haftka
,
R. T.
,
Barker
,
C. A.
,
Grossman
,
B.
,
Mason
,
W. H.
, and
Watson
,
L. T.
,
2001
, “
A Comparison of Global Optimization Methods for the Design of a High-Speed Civil Transport
,”
J. Global Optim.
,
21
, pp.
415
433
.10.1023/A:1012782825166
47.
Lee
,
K.-Y.
, and
Roh
,
M.-I.
,
2001
, “
An Efficient Genetic Algorithm Using Gradient Information for Ship Structural Design Optimization
,”
Ship Tech. Res./Schiffstechnik
,
48
, pp.
161
170
.
48.
McCullers
,
L. A.
,
2004
,
FLOPS: Flight Optimization System Release 6.12
,
NASA Langley Research Center
,
Hampton, VA
.
49.
Feagin
,
R. C.
, and
Morrison
,
W. D.
,
1978
, “
Delta Method, an Empirical Drag Buildup Technique, NASA
, Technical Report No. CR-151971.
50.
Sommer
,
S. C.
, and
Short
,
B. J.
,
1955
, “
Free-Flight Measurements of Turbulent-Boundary-Layer Skin Friction in the Presence of Severe Aerodynamic Heating at High Mach Numbers From 2.8 to 7.0, NASA
, Technical Report No. TN-3391.
51.
Federal Aviation Administration,
2013
, “
FAA Regulations
,” Retrieved on May 26,
2013
, http://www.faa.gov/regulations_policies/faa_regulations
You do not currently have access to this content.