In this study, an optimization methodology is proposed to systematically define the optimal head-cutter geometry and machine-tool settings to simultaneously minimize the tooth contact pressure and angular displacement error of the driven gear (the transmission error), and to reduce the sensitivity of face-hobbed spiral bevel gears to the misalignments. The proposed optimization procedure relies heavily on the loaded tooth contact analysis for the prediction of tooth contact pressure distribution and transmission errors influenced by the misalignments inherent in the gear pair. The load distribution and transmission error calculation method employed in this study were developed by the author of this paper. The targeted optimization problem is a nonlinear constrained optimization problem, belonging to the framework of nonlinear programming. In addition, the objective function and the constraints are not available analytically, but they are computable, i.e., they exist numerically through the loaded tooth contact analysis. For these reasons, a nonderivative method is selected to solve this particular optimization problem. That is the reason that the core algorithm of the proposed nonlinear programming procedure is based on a direct search method. The Hooke and Jeeves pattern search method is applied. The effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. Drastic reductions in the maximum tooth contact pressure (62%) and in the transmission errors (70%) were obtained.

References

References
1.
Litvin
,
F. L.
,
1972
,
Theory of Gear Mesh
,
Műszaki Könyvkiadó
,
Budapest
, pp.
558
575
(in Hungarian).
2.
Litvin
,
F. L.
,
Chang
,
W. S.
,
Lundy
,
M.
, and
Tsung
,
W. J.
,
1990
, “
Design of Pitch Cones for Face-Hobbed Hypoid Gears
,”
ASME J. Mech. Des.
,
112
(3), pp.
413
418
.10.1115/1.2912623
3.
Kawasaki
,
K.
,
2010
, “
Manufacturing Method for Large-Sized Bevel Gears in Cylo-Palloid System Using Multi-Axis Control and Multi-Tasking Machine Tool
,”
Proceedings of International Conference on Gears
,
Munich, VDI-Berichte 2109
, pp.
337
348
.
4.
Stadtfeld
,
H. J.
,
2000
,
The Basics of Gleason Face Hobbing
,
Gleason Works
, Rochester, NY, pp.
1
26
.
5.
Fan
,
Q.
,
2006
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(6), pp.
1315
1327
.10.1115/1.2337316
6.
Fan
,
Q.
,
2007
, “
Enhanced Algorithms of Contact Simulation for Hypoid Gear Drives Produced by Face-Milling and Face-Hobbing Processes
,”
ASME J. Mech. Des.
,
129
(1), pp.
31
37
.10.1115/1.2359475
7.
Shih
,
Y. P.
,
Fong
,
Z. H.
, and
Lin
,
D. C. Y.
,
2007
, “
Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator
,”
ASME J. Mech. Des.
,
129
(1), pp.
38
47
.10.1115/1.2359471
8.
Vimercati
,
M.
,
2007
, “
Mathematical Model for Tooth Surfaces Representation of Face-Hobbed Hypoid Gears and Its Application to Contact Analysis and Stress Calculation
,”
Mech. Mach. Theory
,
42
, pp.
668
690
.10.1016/j.mechmachtheory.2006.06.007
9.
Bibel
,
G. D.
,
Kumar
,
A.
,
Reddy
,
S.
, and
Handschuh
,
R. F.
,
1995
, “
Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis
,”
ASME J. Mech. Des.
,
117
(2A), pp.
235
240
.10.1115/1.2826128
10.
Gosselin
,
C.
,
Cloutier
,
L.
, and
Nguyen
,
Q. D.
,
1995
, “
A General Formulation for the Calculation of the Load Sharing and Transmission Error Under Load of Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
30
, pp.
433
450
.10.1016/0094-114X(94)00049-Q
11.
Fang
,
Z.
,
Wei
,
B.
, and
Deng
,
X.
,
2004
, “
Loaded Tooth Contact Analysis for Spiral Bevel Gears Considering Edge Contact
,”
Proceedings of 11th World Congress in Mechanism and Machine Science
,
China Machine Press, Tianjin
, pp.
838
842
.
12.
de Vaujany
,
J. P.
,
Guingand
,
M.
,
Remond
,
D.
, and
Icard
,
Y.
,
2007
, “
Numerical and Experimental Study of the Loaded Transmission Error of a Spiral Bevel Gear
,”
ASME J. Mech. Des.
,
129
(2), pp.
195
200
.10.1115/1.2406089
13.
Simon
,
V.
,
2000
, “
Load Distribution in Hypoid Gears
,”
ASME J. Mech. Des.
,
122
(4), pp.
529
535
.10.1115/1.1289390
14.
Simon
,
V.
,
2007
, “
Load Distribution in Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
129
(2), pp.
201
209
.10.1115/1.2406090
15.
Simon
,
V.
,
2009
, “
Design and Manufacture of Spiral Bevel Gears With Reduced Transmission Errors
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041007
.10.1115/1.3087540
16.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2009
, “
A Load Distribution Model for Hypoid Gears Using Ease-Off Topography and Shell Theory
,”
Mech. Mach. Theory
,
44
, pp.
1848
1865
.10.1016/j.mechmachtheory.2009.03.009
17.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071004
.10.1115/1.4001722
18.
Kawasaki
,
K.
, and
Tsuji
,
I.
,
2010
, “
Analytical and Experimental Tooth Contact Pattern of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041004
.10.1115/1.4001348
19.
Shih
,
Y. P.
, and
Fong
,
Z. H.
,
2007
, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topology
,”
ASME J. Mech. Des.
,
129
(12), pp.
1294
1302
.10.1115/1.2779889
20.
Shih
,
Y. P.
, and
Fong
,
Z. H.
,
2008
, “
Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062604
.10.1115/1.2890112
21.
Kato
,
S.
,
Ikebe
,
H.
, and
Hiramatsu
,
J.
,
2009
, “
Study on the Tooth Surface Modification of Hypoid Gear in Face Hob System
,”
Proceedings of JSME International Conference on Motion and Power Transmissions
,
Sendai
, pp.
109
111
.
22.
Fan
,
Q.
,
2010
, “
Tooth Surface Error Corrections for Face-Hobbed Hypoid Gears
,”
ASME J. Mech. Des.
,
132
(1), p.
011004
.10.1115/1.4000646
23.
Kawasaki
,
K.
,
Tamura
,
H.
, and
Iwamoto
,
Y.
,
1999
, “
Klingelnberg Spiral Bevel Gears With Small Spiral Angles
,”
Proceedings of 4th World Congress on Gearing and Power Transmissions
,
Paris
, pp.
697
703
.
24.
Hotait
,
M.
,
Kahraman
,
A.
, and
Nishino
,
T.
,
2011
, “
An Investigation of Root Stresses of Hypoid Gears With Misalignments
,”
ASME J. Mech. Des.
,
133
(7), p.
071006
.10.1115/1.4004224
25.
Artoni
,
A.
,
Bracci
,
A.
,
Gabaccini
,
M.
, and
Guiggiani
,
M.
,
2009
, “
Optimization of the Loaded Contact Pattern in Hypoid Gears by Automatic Topography Modification
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011008
.10.1115/1.3013844
26.
Gabiccini
,
M.
,
Bracci
,
A.
, and
Guiggiani
,
M.
,
2010
, “
Robust Optimization of the Loaded Contact Pattern in Hypoid Gears With Uncertain Misalignments
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041010
.10.1115/1.4001485
27.
Artoni
,
A.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Optimization of the Loaded Transmission Error of Hypoid Gears
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011010
.10.1115/1.4000645
28.
Artoni
,
A.
,
Gabiccini
,
M.
,
Guiggiani
,
M.
, and
Kahraman
,
A.
,
2011
, “
Multi-Objective Ease-Off Optimization of Hypoid Gears for Their Efficiency, Noise, and Durability Performances
,”
ASME J. Mech. Des.
,
133
(
6
), p.
121007
.10.1115/1.4005234
29.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Kolivand
,
M.
,
2013
, “
Ease-Off Based Compensation of Tooth Surface Deviations for Spiral Bevel and Hypoid Gears: Only the Pinion Needs Corrections
,”
Mech. Mach. Theory
,
61
, pp.
84
101
.10.1016/j.mechmachtheory.2012.10.005
30.
Simon
,
V.
,
2011
, “
Influence of Tooth Modifications on Tooth Contact in Face-Hobbed Spiral Bevel Gears
,”
Mech. Mach. Theory
,
46
, pp.
1980
1998
.10.1016/j.mechmachtheory.2011.05.002
31.
Kolda
,
T. G.
,
Lewis
,
R. M.
, and
Torczon
,
V.
,
2003
, “
Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods
,”
SIAM Rev.
,
45
(
3
), pp.
385
482
.10.1137/S003614450242889
32.
Hooke
,
R.
, and
Jeeves
,
T. A.
,
1961
, “
Direct Search Solution of Numerical and Statistical Problem
,”
J. Assoc. Comput. Mach.
,
8
(
2
), pp.
212
229
.10.1145/321062.321069
You do not currently have access to this content.