Bioinspired design, the practice of looking to nature to find inspiration for solutions to engineering problems, is increasingly a desired approach to design. It allows designers to tap a wealth of time-tested solutions to difficult problems in a domain less considered by designers. Only recently have researchers developed organized, systematic methods for bioinspired design. Traditionally, bioinspired design has been conducted without the benefit of any organized method. Designers relied on the informal “directed intuitive approach” of bioinspired design, which simply directs designers to consider how nature might solve a problem. This paper presents an experiment to explore the impact of the directed approach on idea generation. This experiment is foundationally important to bioinspired engineering design method research. The results of this experiment serve as a fundamental baseline and benchmark for the comparison of more systematic, and often more involved, bioinspired design methods. A group of 121 novice designers are given one of two design problems and instructed to either generate solutions using the directed approach or to generate solutions without being prompted in any additional fashion. Based on the findings presented here, the directed approach offers designers no advantage in the average number of nonredundant ideas, quality, novelty, or variety of the solutions produced. In conclusion, systematic and organized methods for bioinspired design should be sought to effectively leverage nature's design knowledge.

References

References
1.
Jenkins
,
C. H.
,
2012
,
Bio-Inspired Engineering
,
Momentum Press
,
New York
.
2.
Krieger
,
K.
,
2004
,
“Do Pool Sharks Swim Faster?,”
Science
,
305
(
5684
), pp.
636
637
.10.1126/science.305.5684.636
3.
Biomimicry Institute
,
2009
, “Learning From Humpback Whales How to Create Wind Power,” http://www.biomimicryinstitute.org/case-studies/case-studies/energy.html
4.
Vincent
,
J.
,
Bogatyreva
,
O.
, and
Bogatyrev
,
N.
,
2006
,
“Biology Doesn't Waste Energy—That's Really Smart,”
Proc. SPIE
,
6168
, pp.
61680-1
616801-9
.10.1117/12.682174
5.
Vincent
,
J. F. V.
, and
Mann
,
D. L.
,
2002
,
“Systematic Technology Transfer From Biology to Engineering,”
Philos. Trans. R. Soc., A
,
360
(
1791
), pp.
159
173
.10.1098/rsta.2001.0923
6.
Biomimicry Guild
,
2010
, “
A Conversation With Janine Benyus
,” http://www.biomimicryguild.com/janineinterview.html
7.
Biomimicry Institute
,
2012
, “
What is Biomimicry
,” http://www.biomimicryinstitute.org/about-us/what-is-biomimicry.html
8.
Gordon
,
W. J.
,
1961
,
Synectics: The Development of Creative Capacity
,
Harper & Brothers
, Oxford, UK.
9.
French
,
M. J.
,
1988
,
Invention and Evolution: Design in Nature and Engineering
,
Cambridge University
,
Cambridge, UK
.
10.
Dahmus
,
J.
,
Gonzalez-Zugasti
,
J.
, and
Otto
,
K.
, “
Modular Product Architecture
,” Proc. Proceedings of DETC2000.
11.
Dieter
,
G. E.
, and
Schmidt
,
L. C.
,
2009
,
Engineering Design
,
McGraw-Hill
,
St. Louis, MO
.
12.
Dym
,
C.
, and
Little
,
P.
,
2004
,
Engineering Design: A Project-Based Introduction
,
John Wiley & Sons
,
Hobokin, NJ
.
13.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer Verlag
,
London
.
14.
Dahmus
,
J.
,
Gonzalez-Zugasti
,
J.
, and
Otto
,
K.
,
2001
,
“Modular Product Architecture,”
Des. Stud.
,
22
(
5
), pp.
409
424
.10.1016/S0142-694X(01)00004-7
15.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
,
“Biomimetics: Its Practice and Theory,”
J. R. Soc., Interface
,
3
, pp.
471
482
.10.1098/rsif.2006.0127
16.
Altshuller
,
G.
, and
Rodman
,
S.
,
1999
,
The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center Inc.
,
Worcester, MA
.
17.
Nagel
,
J. K. S.
,
Nagel
,
R. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Function-based, biologically inspired concept generation
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(4), pp.
521
535
.10.1017/S0890060410000375
18.
Tinsley
,
A.
,
Midha
,
P. A.
,
Nagel
,
R. L.
,
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Shu
,
L. H.
,
2008
,
“Exploring the Use of Functional Models as a Foundation for Biomimetic Conceptual Design,”
Design Engineering Technical Conference 2007, Las Vegas, NV, September 4–7, 2007. Paper No. DETC2007-35604 (DTM).
19.
Nagel
,
J. K. S.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Exploring the Use of Category and Scale to Scope a Biological Functional Model
,” ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering ConferenceMontreal, Quebec, Canada.
20.
Chiu
,
I.
, and
Shu
,
L. H.
,
2004
, “
Natural Language Analysis for Biomimetic Design
,”
Design Engineering Technical Conference 2004
, Salt Lake City, UT.
21.
Nagel
,
J.
,
Stone
,
R.
, and
McAdams
,
D. A.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,” International Design Engineering Technical Conference 2010.
22.
Shu
,
L. H.
,
2010
,
“A Natural-Language Approach to Biomimetic Design,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(
4
), pp.
507
519
.10.1017/S0890060410000363
23.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
,
“A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
24.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A.
, and
Yen
,
J.
,
2010
, “
DANE: Fostering Creativity in and Through Biologically Inspired Design
,” Proceedings of First International Conference on Design Creativity, Kobe, Japan.
25.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
, “
A Behavioural Model for Representing Biological and Artificial Systems for Inspiring Novel Designs
,”
Proc. ICED 05: 15th International Conference on Engineering Design: Engineering Design and the Global Economy
,
Engineers Australia
, p.
1093
.
26.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
,
“Metrics for Measuring Ideation Effectiveness,”
Des. Stud.
,
24
(
2
), pp.
111
134
.10.1016/S0142-694X(02)00034-0
27.
Linsey
,
J.
,
Green
,
M. G.
,
Murphy
,
J.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2005
, “
Collaborating to Success: An Experimental Study of Group Idea Generation Techniques
,” ASME Design Engineering Technical Conference 2005 Long Beach, CA, pp.
24
28
.
28.
Hyman
,
B.
,
1998
,
Fundamentals of Engineering Design
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Otto
,
K.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
30.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2004
,
Product Design and Development
,
McGraw-Hill/Irwin
,
Boston, MA
.
31.
Bar Cohen
,
Y.
,
2003
,
Biologically Inspired Intelligent Robots
,
C. Breazeal ed, SPIE Technical Publications
, Bellingham, WA.
32.
Center for Biologically Inspired Design
,
2012
, http://www.cbid.gatech.edu
33.
Bruck
,
H. A.
,
Gershon
,
A. L.
,
Golden
,
I.
,
Gupta
,
S. K.
,
Gyger
, Jr
.
,
L. S.
,
Magrab
,
E. B.
, and
Spranklin
,
B. W.
,
2007
,
“Training Mechanical Engineering Students to Utilize Biological Inspiration During Product Development,”
Bioinspiration Biomimetics
,
2
(
4
), pp.
S198
S209
.10.1088/1748-3182/2/4/S08
34.
Jenkins
,
C. H.
,
2011
, “
Doing BiE: Lessons Learned From Teaching Bio-Inspired Engineering
,” IMECE
2011
, pp.
1
5
.
35.
Vincent
,
J. F. V.
,
1982
,
Structural Biomaterials
,
Wiley
,
New York
.
36.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
,
“A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
37.
Chiu
, I
.
, and
Shu
,
L. H.
,
2005
, “
Bridging Cross-Domain Terminology for Biomimetic Design
,” Design Engineering Technical Conference 2005, Long Beach, CA.
38.
Chiu
, I
.
, and
Shu
,
L. H.
,
2007
,
“Biomimetic Design Through Natural Language Analysis to Facilitate Cross-Domain Information Retrieval,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
21
(
1
), pp.
45
59
.
39.
Cheong
,
H.
,
Shu
,
L.
,
Stone
,
R.
, and
McAdams
,
D.
,
2008
, “
Translating Terms of the Functional Basis into Biologically Meaningful Keywords
,” Design Engineering Technical Conference, 2008, New York.
40.
Srinivasan
,
V.
, and
Chakrabarti
,
A.
,
2009
, “
Sapphire—An Approach to Analysis and Synthesis
,” ICED09.
41.
Stroble
,
J. K.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2009
, “
Conceptualization of Biomimetic Sensors Through Functional Representation of Natural Sensing Solutions
,” Proc. ICED 09: 17th International Conference on Engineering Design, pp.
53
64
.
42.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
, “
Biologically-Inspired Innovation in Engineering Design: A Cognitive Study
,” Proceedings of ICDS2010.
43.
Genco
,
N.
,
Hölttä-Otto
,
K.
, and
Seepersad
,
C.
,
2010
, “
An Experimental Investigation of the Innovation Capabilities of Engineering Students
,” Proceedings of the ASEE Annual Conference and Exposition, Louisville, KY.
44.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
,
“An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.10.1115/1.4003498
45.
Landis
,
J. R.
, and
Koch
,
G. G.
,
1977
,
“The Measurement of Observer Agreement for Categorical Data,”
Biometrics
,
31
(10), pp.
159
174
.10.2307/2529310
46.
Wilson
,
J. O.
,
Nelson
,
B. A.
,
Rosen
,
D.
, and
Yen
,
J.
,
2010
,
“The Effects of Biological Examples in Idea Generation,”
Des. Stud.
,
31
(
2
), pp.
169
186
.10.1016/j.destud.2009.10.003
You do not currently have access to this content.