This paper explores a two state rover concept called the Transforming Roving-Rolling Explorer (TRREx). The first state allows the rover to travel like a conventional 6-wheeled rover. The second state is a sphere to permit faster descent of steep inclines. Performance of this concept is compared to a traditional rocker-bogie (RB) architecture using hi-fidelity simulations in Webots. Results show that for missions involving very rugged terrain, or a considerable amount of downhill travel, the TRREx outperforms the rocker-bogie. Locomotion of the TRREx system using a continuous shifting of the center of mass through “actuated rolling” is also explored. A dynamics model for a cylindrical representation of the rover is simulated to identify feasible configurations capable of generating and maintaining continuous rolling motion even on sandy terrain. Results show that in sufficiently benign terrain gradual inclines can be traversed with actuated rolling. This model allows for increased exploration of the problem's design space and assists in establishing parameters for an Earth prototype.

References

References
1.
Muirhead
,
B. K.
,
2004
, “
Mars Rovers, Past and Future
,”
Proceedings of the IEEE Aerospace Conference
, pp.
6
13
.
2.
Kilit
,
O.
, and
Yontar
,
A.
,
2009
, “
Stability of a New Mars Rover With Multi-Stage Bogie Mechanism
,”
4th International Conference on Recent Advances in Space Technologies
, Istanbul, Turkey, pp.
145
149
.
3.
Kite
,
E. S.
,
Rafkin
,
S.
Michaels
,
T.
,
Dietrich
,
W. E.
, and
Manga
,
M.
,
2011
, “
Chaos Terrain, Storms, and Past Climate on Mars
,”
J. Geophys. Res.-Planets
,
116
, p. E100002.
4.
Eisen
,
H. J.
,
Buck
,
C. W.
,
Gillis-Smith
,
G. R.
, and
Umland
,
J. W.
,
1997
, “
Mechanical Design of the Mars Pathfinder Mission
,”
Proceedings of Seventh European Space Mechanisms and Tribology Symposium
,
ESA Headquarters
, Noordwijk, Netherlands, pp.
11
17
.
5.
Lindemann
,
R. A.
,
Bickler
,
D. B.
,
Harrington
,
B. D.
,
Ortiz
,
G. M.
, and
Voorhees
,
C. J.
,
2006
, “
Mars Exploration Rover Mobility Development–Mechanical Mobility Hardware Design, Development, and Testing
,”
IEEE Rob. Autom. Mag.
,
13
(
2
), pp.
19
26
.10.1109/MRA.2006.1638012
6.
Golombek
,
M.
,
Arvidson
,
R. E.
,
Bell
,
J. F.
, Christensen, P. R., Crisp, J. A., Crumpler, L. S., Ehlmann, B. L., Fergason, R. L., Grant, J. A., Greeley, R., Haldemann, A. F. C., Kass, D. M., Parker, T. J., Schofield, J. T., Squyres, S. W., and Zurek, R. W.,
2005
, “
Assessment of Mars Exploration Rover Landing Site Predictions
,”
Nature
,
436
(
7047
), pp.
44
48
.10.1038/nature03600
7.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.10.1016/S0921-8890(02)00240-3
8.
Miller
,
D. P.
, and
Tze-Liang
,
L.
,
2002
, “
High-Speed Traversal of Rough Terrain Using a Rocker-Bogie Mobility System
,”
Space 2002 and Robotics 2002: Proceedings of Space 2002: The Eighth International Conference and Exposition on Engineering, Construction, Operations, and Business in Space, and Proceedings of Robotics 2002: The Fifth International Conference and Exposition/Demonstration on Robotics for Challenging Situations and Environments
, Albuquerque, NM.
9.
Lindemann
,
R. A.
, and
Voorhees
,
C. J.
,
2005
, “
Mars Exploration Rover Mobility Assembly Design, Test, and Performance
,”
2005 IEEE Conference on Systems
,
Man and Cybernetics
, The Big Island, HI, Vol.
1
, pp.
450
455
.
10.
Edwin
,
L. E.
,
Mazzoleni
,
A. P.
, and
Hartl
,
A. E.
,
2012
, “
Biologically Inspired Transforming Roving-Rolling Explorer (TRREx) Rover for Lunar Exploration
,”
Proceedings of the 63rd International Astronautical Congress
, Naples, Italy, Paper IAC-12.A3.2D.12.
11.
Ferguson
,
S.
,
Lewis
,
K.
,
de Weck
,
O.
, and
Siddiqi
,
A.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,” 2007 ASME DETC and CIE Conferences, Las Vegas, NV, Sept. 4–7,
ASME
Paper No. DETC2007/DAC-35745, pp. 249–263.10.1115/DETC2007-35745
12.
Singh
,
V.
,
Skiles
,
S.
,
Krager
,
J.
,
Wood
,
K.
,
Jensen
,
D.
, and
Sierakowski
,
D.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), pp.
1
18
.10.1115/1.3125205
13.
Haldaman
,
J.
,
2010
, “
Study of Reconfigurability and Reconfigurable Products for Use in Design
,” M.S. thesis, Penn State University, University Park, PA.
14.
Haldaman
,
J.
, and
Parkinson
,
M.
,
2010
, “
Reconfigurable Products and Their Means of Reconfiguration
,”
2010 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Quebec, Canada, Aug. 15–18,
ASME
Paper No. DETC2010-28528, pp. 219–228.10.1115/DETC2010-28528
15.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
,
2004
, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
412
419
.10.1115/1.1701874
16.
Siddiqi
,
A.
,
de Weck
,
O.
, and
Iagnemma
,
K.
,
2006
, “
Reconfigurability in Planetary Surface Vehicles: Modeling Approaches and Case Study
,”
J. Br. Interplanet. Soc.
,
59
(
12
):
450
460
.
17.
Neches
,
R.
,
2011
, “
Engineered Resilient Systems S&T Priority Description and Roadmap
,”
Proceedings of the NDIA 8th Annual Disruptive Technologies Conference
, Washington D.C.
18.
Madni
,
A.
, and
Jackson
,
S.
,
2009
, “
Towards a Conceptual Framework for Resilience Engineering
,”
IEEE Syst. J.
,
3
(
2
), pp.
181
191
.10.1109/JSYST.2009.2017397
19.
Namgoong
,
H.
,
Crossley
,
W. A.
, and
Lyrintzis
,
A. S.
,
2012
, “
Morphing Airfoil Design for Minimum Drag and Actuation Energy Including Aerodynamic Work
,”
J. Aircr.
,
49
(
4
), pp.
981
990
.10.2514/1.C031395
20.
Bowman
,
J.
,
Weisshaar
,
T.
, and
Sanders
,
B.
,
2002
, “
Evaluating the Impact of Morphing Technologies on Aircraft Performance
,”
43rd AIAA/ASME/ASCE/AHA/ACS Structures, Structural Dynamics, and Materials Conference
, Denver, CO, AIAA 2002–1631.
21.
Ferguson
,
S.
,
Kasprzak
,
E.
, and
Lewis
,
K.
,
2008
, “
Designing a Family of Reconfigurable Vehicles Using Multilevel Multidisciplinary Design Optimization
,”
Struct. Multidiscip. Optim.
,
39
(
2
), pp.
171
186
.10.1007/s00158-008-0319-3
22.
Olewnik
,
A.
, and
Lewis
,
K.
,
2006
, “
A Decision Support Framework for Flexible System Design
,”
J. Eng. Des.
,
17
(
1
), pp.
75
97
.10.1080/09544820500274019
23.
Khire
,
R.
, and
Messac
,
A.
,
2008
, “
Selection-Integrated Optimization (SIO) Methodology for Optimal Design of Adaptive Systems
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101401
.10.1115/1.2965365
24.
Chmarra
,
M.
,
Waarsing
,
R.
,
Verriet
,
J.
, and
Tomiyama
,
T.
,
2010
, “
State Transition in Reconfigurable Systems
,”
2010 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Quebec, Canada, Aug. 15–18,
ASME
Paper No. DETC2010–28723.
25.
Siddiqi
,
A.
, and
de Weck
,
O.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101102
.10.1115/1.2965598
26.
Arts
,
L.
,
Chmarra
,
M.
, and
Tomiyama
,
T.
,
2008
, “
Modularization Method for Adaptable Products
,”
2008 ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, New York, NY, Aug. 3–6,
ASME
Paper No. DETC2008-49338.10.1115/DETC2008-49338
27.
Lewis
,
P.
, and
Mattson
,
C.
,
2011
, “
A Method for Developing Systems that Traverse the Pareto Frontiers of Multiple System Concepts Through Modularity
,”
Struct. Multidiscip. Optim.
,
45
(
4
), pp.
467
478
.10.1007/s00158-011-0735-7
28.
Lewis
,
P.
,
Murray
,
V.
, and
Mattson
,
C.
,
2011
, “
A Design Optimization Strategy for Creating Devices That Traverse the Pareto Frontier Over Time
,”
Struct. Multidiscip. Optim.
,
43
(
2
), pp.
191
204
.10.1007/s00158-010-0555-1
29.
Chmarra
,
M.
,
Arts
,
L.
, and
Tomiyama
,
T.
,
2008
, “
Towards Adaptable Architecture
,”
2008 ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, New York, NY, Aug. 3–6,
ASME
Paper No. DETC2008-49971.10.1115/DETC2008-49971
30.
Pate
,
D.
,
Patterson
,
M.
, and
German
,
B.
,
2012
, “
Optimizing Families of Reconfigurable Aircraft for Multiple Missions
,”
J. Aircr.
,
49
(
6
):
1988
2000
.10.2514/1.C031667
31.
Patterson
,
M.
,
Pate
,
D.
, and
German
,
B.
,
2012
,
Performance Flexibility of Reconfigurable Families of Unmanned Air Vehicles
,”
J. Aircr.
,
49
(
6
), pp.
1831
1843
.10.2514/1.C031666
32.
Simpson
,
T.
,
Siddique
,
Z.
, and
Jiao
,
J.
, eds.,
2006
,
Product Platform and Product Family Design: Methods and Applications
,
Springer
,
New York
.
33.
Jiao
,
J.
,
Simpson
,
T.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.10.1007/s10845-007-0003-2
34.
Pirmoradi
,
Z.
, and
Wang
,
G.
,
2011
, “
Recent Advancements in Product Family Design and Platform-Based Product Development: A Literature Review
,”
2011 ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Washington, DC, Aug. 28–31,
ASME
Paper No. DETC2011–47959, pp. 1041–1055.10.1115/DETC2011-47959
35.
Ferguson
,
S.
, and
Lewis
,
K.
,
2006
, “
Effective Development of Reconfigurable Systems Using Linear State-Feedback Control
,”
AIAA J.
,
44
(
4
), pp.
868
878
.10.2514/1.17147
36.
McGowan
,
A.
,
Vicroy
,
D.
,
Busan
,
R.
, and
Hahn
,
S.
,
2009
, “
Perspectives on Highly Adaptable or Morphing Aircraft
,”
RTO Applied Vehicle Technology Panel (AVT) Symposium
, Evora, Portugal.
37.
Yen
,
J.
,
Jain
,
A.
, and
Balaram
,
J.
,
1999
, “
ROAMS: Rover Analysis Modeling and Simulation
,”
5th International Symposium on Artificial Intelligence, Robotics and Automation in Space
, Noordwijk, Netherlands.
38.
Michaud
,
S.
,
Richter
,
L.
,
Thueer
,
T.
, Gibbesch, A., Huelsing, T., Schmitz, N., Weiss, S., Krebs, A., Patel, N., Joudrier, L., Siegwart, R., Schafer, B., and Ellery, A.,
2006
, “
Rover Chassis Evaluation and Design Optimization Using the RCET
,”
Proceedings of the 9th ESA Workshop on ASTRA
, Noordwijk, Netherlands.
39.
Michaud
,
S.
,
Richter
,
L.
,
Patel
,
N.
, Thueer, T., Huelsing, T., Joudrier, L., Siegwart, R., and Ellery, A.,
2004
, “
RCET: Rover Chassis Evaluation Tools
,”
Proceedings of the 8th ESA Workshop on ASTRA
, Noordwijk, Netherlands.
40.
Sohl
,
G.
, and
Jain
,
A.
,
2005
, “
Wheel-Terrain Contact Modeling in the ROAMS Planetary Rover Simulation
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
6
(
A–C
), pp.
89
97
.
41.
Yang
,
Y. C.
,
Bao
,
J. S.
,
Jin
,
Y.
, and
Cheng
,
Y. L.
,
2008
, “
A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies
,”
Int. J. Adv. Rob. Syst.
,
5
(
2
), pp.
201
208
.
42.
Patel
,
N.
,
Ellery
,
A.
,
Allouis
,
E.
,
Sweeting
,
M.
, and
Richter
,
L.
,
2004
, “
Rover Mobility Performance Evaluation Tool (RMPET): A Systematic Tool for Rover Chassis Evaluation Via Application of Bekker Theory
,”
Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation
, Noordwijk, Netherlands.
43.
Webots, Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com
44.
Michel
,
O.
,
2004
, “
WebotsTM: Professional Mobile Robot Simulation
,”
Int. J. Adv. Robotic Syst.
,
1
(
1
), pp. 39–42.
45.
Wang
,
L. F.
,
Tan
,
K. C.
, and
Prahlad
,
V.
,
2002
, “
Developing Khepera Robot Applications in a Webots Environment
,”
International Symposium on Micromechatronics and Human Science
, Nagoya, Japan.
46.
Open Dynamics Engine, www.ode.org
47.
Genta
,
G.
, and
Genta
,
A.
,
2011
, “
Preliminary Assessment of a Small Robotic Rover for Titan Exploration
,”
Acta Astronaut.
,
68
(
5–6
), pp.
556
566
.10.1016/j.actaastro.2010.02.016
48.
Bauer
,
R.
,
Barfoot
,
T.
,
Leung
,
W.
, and
Ravindran
,
G.
,
2008
, “
Dynamic Simulation Tool Development for Planetary Rovers
,”
Int. J. Adv. Rob. Syst.
,
5
(
3
), pp.
311
314
.
49.
Bruhn
,
F. C.
,
Kratz
,
H.
,
Warell
,
J.
, et al. .,
2008
, “
A Preliminary Design for a Spherical Inflatable Microrover for Planetary Exploration
,”
Acta Astronaut.
,
63
(
5–6
), pp.
618
631
.10.1016/j.actaastro.2008.01.044
50.
Chen
,
F.
, and
Genta
,
G.
,
2012
, “
Dynamic Modeling of Wheeled Planetary Rovers: A Model Based on the Pseudo-Coordinates Approach
,”
Acta Astronaut.
,
81
, pp.
288
305
.10.1016/j.actaastro.2012.06.008
51.
Chen
,
B. C.
,
Wang
,
R. B.
,
Jia
,
Y.
,
Guo
,
L.
, and
Yang
,
L.
,
2009
, “
Design of a High Performance Suspension for Lunar Rover Based on Evolution
,”
Acta Astronaut.
,
64
(
9–10
), pp.
925
934
.10.1016/j.actaastro.2008.11.009
52.
Hacot
,
H.
,
Dubowsky
,
S.
, and
Bidaud
,
P.
,
1998
, “
Analysis and Simulation of a Rocker-Bogie Exploration Rover
,” Courses and Lectures—International Centre for Mechanical Sciences, pp.
95
102
.
53.
Perko
,
H.
,
Nelson
,
J.
, and
Green
,
J.
,
2006
, “
Mars Soil Mechanical Properties and Suitability of Mars Soil Simulants
,”
J. Aerosp. Eng.
,
19
(
3
), pp.
169
176
.10.1061/(ASCE)0893-1321(2006)19:3(169)
54.
Golombek
,
M.
, and
Rapp
,
D.
,
1997
, “
Size-frequency Distributions of Rocks on Mars and Earth Analog Sites: Implications for Future Landed Missions
,”
J. Geophys. Res.—Planets
,
102
(
E2
), pp.
4117
4129
.10.1029/96JE03319
55.
Genta
,
G.
,
2011
,
Introduction to the Mechanics of Space Robots
,
Springer Science Business Media
,
New York
.
56.
Otto
,
K. N.
, and
Antonsson
,
E. K.
,
1991
, “
Trade-Off Strategies in Engineering Design
,”
Res. Eng. Des.
,
3
(
2
), pp.
87
103
.10.1007/BF01581342
57.
Lewis
,
K. E.
,
Chen
,
W.
, and
Schmidt
,
L. C.
,
2006
,
Decision Making in Engineering Design
,
ASME Press
,
New York
.
58.
Hazelrigg
,
G.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.10.1115/1.2829328
59.
See
,
T.-K.
,
Gurnani
,
A.
, and
Lewis
,
K.
,
2005
, “
Multi-Attribute Decision Making Using Hypothetical Equivalents and Inequivalents
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
950
958
.10.1115/1.1814389
60.
Wilson
,
J. L.
,
Mazzoleni
,
A. P.
, and
DeJarnette
,
F. R.
,
2008
, “
Design, Analysis and Testing of Mars Tumbleweed Rover Concepts
,”
J. Spacecr. Rockets
,
45
(
2
), pp.
370
382
.10.2514/1.31288
61.
Hartl
,
A. E.
, and
Mazzoleni
,
A. P.
,
2010
, “
Dynamic Modeling of a Wind-Driven Tumbleweed Rover Including Atmospheric Effects
,”
J. Spacecr. Rockets
,
47
(
3
), pp.
493
502
.10.2514/1.45174
62.
Hartl
,
A. E.
, and
Mazzoleni
,
A. P.
,
2012
, “
Terrain Modeling and Simulation of a Tumbleweed Rover Traversing Martian Rock Fields
,”
J. Spacecr. Rockets
,
49
(
2
), pp.
401
412
.10.2514/1.A32132
63.
Hartl
,
A. E.
, and
Mazzoleni
,
A. P.
,
2008
, “
Parametric Study of Spherical Rovers Crossing a Valley
,”
J. Guid., Control, Dyn.
,
31
(
3
), pp.
775
778
.10.2514/1.33932
64.
Uicker
,
J. J.
,
Pennock
,
G.
, and
Shigley
,
J.
,
2003
,
Theory of Machines and Mechanisms
,
Oxford University
,
MA
.
65.
Meirovitch
,
L.
,
2003
,
Methods of Analytical Dynamics
,
Dover
,
Mineola, NY
.
66.
MATLAB version 7.10.0.499
,
2010
,
Natick
,
The MathWorks Inc.
,
MA
.
67.
Baker
,
I. O.
,
1919
,
A Treatise on Roads and Pavements
,
John Wiley & Sons
, New York.
You do not currently have access to this content.