This paper outlines an experimentally based design method for a compatible 3-DOF shoulder exoskeleton with an adaptive center of rotation (CoR) by matching the mechanical CoR with the anatomical CoR to reduce human–machine interaction forces and improve comfort during dynamic humeral motion. The spatial–temporal description for anatomical CoR motion is obtained via a specific experimental task conducted on six healthy subjects. The task is comprised of a static section and a dynamic section, both of which are recorded with an infrared motion capture system using body-attached markers. To reduce the influence of human soft tissues, a custom-made four-marker group block was placed on the upper arm instead of using discrete markers. In the static section, the position of anatomical CoR is kept stationary and calculated using a well-known functional method. Based on the static results, the dynamic section determines the statistical relationship between the dynamic CoR position and the humeral orientation using an optimization method when subjects move their upper arm freely in the sagittal and coronal planes. Based on the resolved anatomical CoR motion, a new mechanical CoR model derived from a traditional ball-and-socket joint is applied to match the experimental results as closely as possible. In this mechanical model, the CoR motion in three-dimensional space is adjusted by translating two of the three intersecting joint axes, including the shoulder abduction/adduction and flexion/extension. A set of optimal translation parameters is obtained through proper matching criterion for the two CoRs. Based on the translation parameters, a compatible shoulder exoskeleton was manufactured and compared with a traditional shoulder exoskeleton with a fixed CoR. An experimental test was conducted to validate the CoR motion adaptation ability by measuring the human–machine interaction force during passive shoulder joint motion. The results provide a promising direction for future anthropomorphic shoulder exoskeleton design.

References

References
1.
Hogfors
,
C.
,
Peterson
,
B.
,
Sigholm
,
G.
, and
Herberts
,
P.
,
1991
, “
Biomechanical Model of the Human Shoulder Joint—II. The Shoulder Rhythm
,”
J. Biomech.
,
24
(
8
), pp.
699
709
.10.1016/0021-9290(91)90334-J
2.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Desing
,”
IEEE/ASME Trans. Mech.
,
12
(
4
), pp.
408
417
.10.1109/TMECH.2007.901934
3.
Sugar
,
T. G.
,
He
,
J.
,
Koeneman
,
E. J.
,
Koeneman
,
J. B.
,
Herman
,
R.
,
Huang
,
H.
,
Schultz
,
R. S.
,
Herring
,
D.
,
Wanberg
,
J.
, and
Balasubramanian
,
S.
,
2007
, “
Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
336
346
.10.1109/TNSRE.2007.903903
4.
Caldwell
,
D. G.
,
Tsagarakis
,
N.
,
Kousidou
,
S.
,
Costa
,
N.
, and
Sarakoglou
,
I.
,
2007
, “
‘Soft’ Exoskeleton for Upper and Lower Body Rehabilitation–Design, Control, and Testing
,”
Int. J. Hum. Rob.
,
4
(
3
), pp.
549
574
.10.1142/S0219843607001151
5.
Schiele
,
A.
, and
Van Der Helm
,
F. C. T.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.10.1109/TNSRE.2006.881565
6.
Wu
,
G.
,
Van Der
Helm
,
F. C. T.
,
Veeger
,
H.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
Mcquade
,
K.
, and
Wang
,
X.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist, and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
7.
Morrow
,
M. M. B.
,
Kaufman
,
K. R.
, and
An
,
K. N.
,
2011
, “
Scapula Kinematics and Associated Impingement Risk in Manual Wheelchair Users During Propulsion and a Weight Relief Lift
,”
Clin. Biomech.
,
26
(
4
), pp.
352
357
.10.1016/j.clinbiomech.2010.12.001
8.
Hingtgen
,
B.
,
Mcguire
,
J. R.
,
Wang
,
M.
, and
Harris
,
G. F.
,
2006
, “
An Upper Extremity Kinematic Model for Evaluation of Hemiparetic Stroke
,”
J. Biomech.
,
39
(
4
), pp.
681
688
.10.1016/j.jbiomech.2005.01.008
9.
Harryman
,
D. T.
,
Sidles
,
J. A.
,
Harris
,
S. L.
,
Lippitt
,
S. B.
, and
Matsen
,
F. A.
,
1995
, “
The Effect of Articular Conformity and the Size of the Humeral Head Component on Laxity and Motion after Glenohumeral Arthroplasty—A Study in Cadavera
,” J. Bone Jt. Surg. Am.,
77
(
4
), pp.
555
563
. Available at: http://jbjs.org/article.aspx?articleid=22935
10.
Poppen
,
N.
, and
Walker
,
P.
,
1976
, “
Normal and Abnormal Motion of the Shoulder
,”
J. Bone Jt. Surg. Am.
,
58
(
2
), pp.
195
201
.10.1007/978-1-4471-5451-8_82
11.
Karduna
,
A. R.
,
2001
, “
Direct 3-Dimensional Measurement of Scapular Kinematics During Dynamic Movements in vivo
,”
J. Shoulder Elbow Surg.
,
10
(
3
), pp.
269
277
.10.1067/mse.2001.112954
12.
Camomilla
,
V.
,
Cereatti
,
A.
,
Vannozzi
,
G.
, and
Cappozzo
,
A.
,
2006
, “
An Optimized Protocol for Hip Joint Centre Determination Using the Functional Method
,”
J. Biomech.
,
39
(
6
), pp.
1096
1106
.10.1016/j.jbiomech.2005.02.008
13.
Lempereur
,
M.
,
Leboeuf
,
F.
,
Brochard
,
S.
,
Rousset
,
J.
,
Burdin
,
V.
, and
Rémy-Néris
,
O.
,
2010
, “
In vivo Estimation of the Glenohumeral Joint Centre by Functional Methods: Accuracy and Repeatability Assessment
,”
J. Biomech.
,
43
(
2
), pp.
370
374
.10.1016/j.jbiomech.2009.09.029
14.
Gamage
,
S. S.
, and
Lasenby
,
J.
,
2002
, “
New Least Squares Solutions for Estimating the Average Centre of Rotation and the Axis of Rotation
,”
J. Biomech.
,
35
(
1
), pp.
87
93
.10.1016/S0021-9290(01)00160-9
15.
Halvorsen
,
K.
,
2003
, “
Bias Compensated Least Squares Estimate of the Center of Rotation
,”
J. Biomech.
,
36
(
7
), pp.
999
1008
.10.1016/S0021-9290(03)00070-8
16.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2006
, “
A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints
,”
J. Biomech.
,
39
(
15
), pp.
2798
2809
.10.1016/j.jbiomech.2005.10.002
17.
Chang
,
J. H.
,
Hsu
,
A. T.
, and
Chang
,
G. L.
,
2008
, “
In vitro Estimation of Glenohumeral Joint Center of Rotation
,” J. Med. Biol. Eng.,
28
(
4
), pp.
191
195
. Available at: http://jmbe.bme.ncku.edu.tw/index.php/bme/article/viewArticle/306
18.
Woltring
,
H.
,
Huiskes
,
R.
,
De Lange
,
A.
, and
Veldpaus
,
F.
,
1985
, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
,
18
(
5
), pp.
379
389
.10.1016/0021-9290(85)90293-3
19.
Frisoli
,
A.
,
Salsedo
,
F.
,
Bergamasco
,
M.
,
Rossi
,
B.
, and
Carboncini
,
M. C.
,
2009
, “
A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
115
126
.10.1080/11762320902959250
20.
Kobayashi
,
H.
,
Suzuki
,
H.
,
Iba
,
M.
, and
Hasegawa
,
S.
,
2006
, “
Development of a Shoulder Mechanism for a Muscle Suit Supporting Upper Limb Motion and Proposal of a Posture Control Method
,” Trans. Soc. Instrum. Control Eng.,
42
(
4
), pp.
376
385
. Available at: https://www.jstage.jst.go.jp/article/sicetr1965/42/4/42_4_376/_article
21.
Zhang
,
J.
,
Fu
,
H.
,
Dong
,
Y.
,
Zhang
,
Y.
,
Yang
,
C.
, and
Chen
,
Y.
,
2008
, “
Novel 6-DOF Wearable Exoskeleton Arm With Pneumatic Force-Feedback for Bilateral Teleoperation
,”
Chin. J. Mech. Eng.
,
21
(
3
), pp.
58
65
.10.3901/CJME.2008.03.058
22.
Mihelj
,
M.
,
Nef
,
T.
, and
Riener
,
R.
,
2007
, “
A Novel Paradigm for Patient-Cooperative Control of Upper-Limb Rehabilitation Robots
,”
Adv. Rob.
,
21
(
8
), pp.
843
867
.10.1163/156855307780851975
23.
Gijbels
,
D.
,
Lamers
,
I.
,
Kerkhofs
,
L.
,
Alders
,
G.
,
Knippenberg
,
E.
, and
Feys
,
P.
,
2011
, “
The Armeo Spring as Training Tool to Improve Upper Limb Functionality in Multiple Sclerosis: A Pilot Study
,”
J. Neuroeng. Rehabil.
,
8
(
5
), pp.
223
230
.10.1186/1743-0003-8-5
24.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
Van Der Helm
,
F. C. T.
, and
Van Der Kooij
,
H.
,
2009
, “
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
628
633
.10.1109/TRO.2009.2019147
25.
Mihelj
,
M.
,
Nef
,
T.
, and
Riener
,
R.
,
2007
, “
ARMin II–7 DoF Rehabilitation Robot: Mechanics and Kinematics
,”
IEEE International Conference on Robotics and Automation
,
Roma
, pp.
4120
4125
.
26.
Carignan
,
C.
,
Tang
,
J.
, and
Roderick
,
S.
,
2009
, “
Development of an Exoskeleton Haptic Interface for Virtual Task Training
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis
, pp.
3697
3702
.
27.
Ball
,
S. J.
,
Brown
,
I. E.
, and
Scott
,
S. H.
,
2007
, “
Medarm: A Rehabilitation Robot With 5DOF at the Shoulder Complex
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
ETH Zurich
, pp.
1
6
.
28.
Park
,
H. S.
,
Ren
,
Y.
, and
Zhang
,
L. Q.
,
2008
, “
Intelliarm: An Exoskeleton for Diagnosis and Treatment of Patients With Neurological Impairments
,”
Proceedings of 2008 IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale
, pp.
109
114
.
29.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III–Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.10.1080/11762320902840179
30.
Doorenbosch
,
C. A. M.
,
Harlaar
,
J.
, and
Veeger
,
D.
,
2003
, “
The Globe System: An Unambiguous Description of Shoulder Positions in Daily Life Movements
,”
J. Rehabil. Res. Dev.
,
40
(
2
), pp.
147
156
.10.1682/JRRD.2003.03.0149
31.
Cave
,
E. F.
, and
Roberts
,
S. M.
,
1936
, “
A Method for Measuring and Recording Joint Function
,” J. Bone Jt. Surg.,
18
(
2
), pp.
455
465
. Available at: http://jbjs.org/article.aspx?articleid=8431
32.
Gao
,
B.
,
Conrad
,
B.
, and
Zheng
,
N.
,
2007
, “
Comparison of Skin Error Reduction Techniques for Skeletal Motion Analysis
,”
J. Biomech.
,
40
(
2
), pp.
551
551
.10.1016/S0021-9290(07)70541-9
33.
Inman
,
V. T.
, and
Abbott
,
L. R. C.
,
1944
, “
Observations on the Function of the Shoulder Joint
,” J. Bone Jt. Surg. Am.,
26
(
1
), pp.
1
30
. Available at: http://jbjs.org/article.aspx?articleid=10010
34.
More
,
J.
,
1978
, “
The Levenberg-Marquardt Algorithm: Implementation and Theory
,”
Numer. Anal.
,
630
, pp.
105
116
.10.1007/bfb0067700
35.
Lenzi
,
T.
,
Vitiello
,
N.
,
Rossi
,
S. M. M. D.
,
Persichetti
,
A.
,
Giovacchini
,
F.
,
Roccella
,
S.
,
Vecchi
,
F.
, and
Carrozza
,
M. C.
,
2011
, “
Measuring Human–Robot Interaction on Wearable Robots: A Distributed Approach
,”
Mechatronics
,
21
(
6
), pp.
1123
1131
.10.1016/j.mechatronics.2011.04.003
36.
Medical Research Council
,
1976
,
Aids to the Examination of the Peripheral Nervous System
,
HMSO
,
London
.
You do not currently have access to this content.