This paper introduces a novel methodology to embed desired reference trajectories into the modal dynamics of an underactuated system through eigenstructure assignment. A unique characteristic of the method is that it decomposes the control input into two parts: an open loop, periodic excitation signal, and a closed loop feedback signal. The periodic excitation causes the system’s natural modes to resonate in a fashion that matches the desired trajectory; modal dynamics, determined by the system’s eigenstates (eigenvectors and their corresponding eigenvalues), are shaped by tuning physical and control parameters concurrently. The method requires the solution of a dual-domain eigenstate factorization problem, in which it is necessary to compute certain unknown elements of a matrix and of its eigenvectors at the same time.

References

References
1.
Franklin
,
G.
, and
Powell
,
J.
,
2006
,
Feedback Control of Dynamic Systems
,
Pearson Prentice Hall
,
New Jersey
.
2.
Olbrot
,
A. W.
,
1994
, “
Arbitrary Robust Eigenvalue Placement by a Static-State Feedback
,”
IEEE Trans. Autom. Control
,
41
(
8
), pp.
1214
1215
.10.1109/9.533688
3.
Hung
,
M.
, and
Sehitoglu
,
H.
,
1997
, “
A New Eigenvalue Placement Method for Linear Dynamic Systems
,”
Proceedings of the 36th Conference on Decision & Control
, IEEE, San Diego, CA, pp.
4286
4287
.
4.
Fathy
,
H.
,
Julie
,
R.
,
Papalambros
,
P.
, and
Ulsoy
,
A.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the American Control Conference
, IEEE, Arlington, VA, pp
1864
1869
.
5.
Abid
,
M.
,
Chenguel
,
A.
, and
Jerraya
,
A.
,
1996
, “
Exploration of Hardware/Software Design Space Through a Codesign of Robot Arm Controller
,”
Proceedings from Design Automation Conference
, Geneva, Sept. 16–20, IEEE, Las Vegas, NV, pp.
42
47
.
6.
Allison
,
J.
,
2012
, “
Plant-Limited Co-Design of an Energy Efficient Counterbalanced Robotic Manipulator
,”
Proceedings of the 2012 ASME Design Engineering Technical Conference
, ASME, Paper No. DETC2012-71108.
7.
Allison
,
J.
, and
Nazar
,
S.
,
2010
, “
Combined Plant and Controller Design Using Decomposition-Based Design Optimization and the Minimum Principle
,”
Proceedings of the 2010 ASME Design Engineering Technical Conference
, ASME, Paper No. DETC2010-28887.
8.
Pfeifer
,
R.
,
Lungarella
,
M.
, and
Lida
,
F.
,
2007
, “
Self-Organization, Embodiment, and Biologically Inspired Robotics
,”
Science
,
318
, pp.
1088
1093
.10.1126/science.1145803
9.
Full
,
R.
, and
Koditschek
,
D.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
23
), pp.
3325
3332
.
10.
Saranli
,
U.
, and
Koditschek
,
D.
,
2003
, “
Template Based Control of Hexapedal Running
,”
International Conference on Robotics and Automation
, IEEE, Taipei, Taiwan, pp.
1374
1379
.
11.
Milman
,
M.
,
Salama
,
M.
,
Scheid
,
R. E.
,
Bruno
,
R.
, and
Gibson
,
J. S.
,
1991
, “
Combined Control-Structural Optimization
,”
Comput. Mech.
,
8
(
1
), pp.
1
18
.10.1007/BF00370544
12.
Fonseca
,
I. M.
, and
Bainum
,
P. M.
,
2004
, “
Integrated Structural and Control Optimization
,”
J. Vib. Control
,
10
, pp.
1377
1391
.10.1177/1077546304042043
13.
Rao
,
S.
,
1988
, “
Combined Structural and Control Optimization of Flexible Structures
,”
Eng. Optimiz.
,
13
(
1
), pp.
1
16
.10.1080/03052158808940943
14.
Khot
,
N. S.
,
1988
, “
Structure/Control Optimization to Improve the Dynamic Response of Space Structures
,”
Comput. Mech.
,
3
(
3
), pp.
179
186
.10.1007/BF00297444
15.
Becus
,
G. A.
,
Lui
,
C. Y.
,
Venkayya
,
V. B.
, and
Tischler
,
V. A.
,
1987
, “
Simultaneous Structural and Control Optimization via Linear Quadratic Regulator Eigenstructure Assignment
,”
Proceedings of the 58th Shock and Vibration Symposium
,
Huntsville, AL
, IEEE, pp.
225
232
.
16.
Junkins
,
J. L.
, and
Rew
,
D. W.
,
1988
,
Unified Optimization of Structures and Controllers; Large Space Structures: Dynamics and Control (Springer Series in Computational Mechanics),
Springer Berlin Heidelberg, pp.
323
353
.
17.
Saunders
,
F.
, and
Rife
,
J.
, “
Modal/Eigenstate Determination for Reoccurring Dynamics
,”
Soft Robot.
(unpublished).
18.
Spong
,
M. W.
,
1994
, “
Partial Feedback Linearization of Underactuated Mechanical Systems
,”
International Conference on
Intelligent Robots and Systems
, Vol.
1
, pp.
314
321
.10.1109/IROS.1994.407375
19.
Reyhanoglu
,
M.
, and
McClamroch
,
N.
,
1999
, “
Dynamics and Control of a Class of Under-Actuated Mechanical Systems
,”
IEEE Trans. Autom. Control
,
44
, pp. 1663–1671.10.1109/9.788533
20.
Gu
,
Y.
,
1993
, “
A Direct Adaptive Control Scheme for Under-Actuated Dynamic Systems
,”
Proceedings of the 32nd Conference on Decision and Control
,
San Antonio, TX
.
21.
Ueda
,
J.
, and
Yoshikaw
,
T.
,
2004
, “
Mode Shape Compensator for Improving Robustness of Manipulator Mounted on Flexible Base
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
256
268
.10.1109/TRA.2003.819726
22.
Bachelier
,
O.
,
LAII.
,
Poitiers
,
Bosche
,
J.
, and
Mehdi
,
D.
,
2006
, “
On Pole Placement via Eigenstructure Assignment Approach
,”
IEEE Trans. Autom. Control
,
51
, pp.
1554
1558
.10.1109/TAC.2006.880809
23.
Rew
,
D. W.
, and
Junkins
,
J. L.
,
1987
, “
Robust Eigenstructure Assignment by a Projection Method: Application to Multi-Criterion Optimization
,”
AAS/AIAA Astrodynamics Conference
, Aug 10–13, 1987, Kalispell, MT.
24.
Srinathkumar
,
S.
,
1978
, “
Eigenvalue/Eigenvector Assignment Using Output Feedback
,”
IEEE Trans. Autom.tic Control
,
23
(
1
), pp.
79
81
.10.1109/TAC.1978.1101685
25.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
26.
Bretscher
,
O.
,
2009
,
Linear Algebra With Applications
,
Pearson
, Upper Saddle River, NJ.
27.
Saunders
,
F.
,
Rieffel
,
J.
, and
Rife
,
J.
,
2009
, “
A Method of Accelerating Convergence for Genetic Algorithms Evolving Morphological and Control Parameters for a Biomimetic Robot
,”
Proceedings of the International Conference on Autonomous Robots and Agents (ICARA)
,
IEEE, Wellington, New Zealand
, Feb. 10–12, pp.
155
160
.
28.
Kincaid
,
D.
, and
Cheney
,
W.
,
2002
,
Numerical Analysis: Mathematics of Scientific Computing
,
American Mathematical Society
,
Providence, RI
.
29.
Saunders
,
F.
,
2012
, “
Embedding Desired Dynamics in Physical and Control Parameters of a Mechanical System
,” Ph.D. thesis, Tufts University, Medford, MA.
30.
Saunders
,
F.
, and
Rife
,
J.
,
2011
, “
Defining Shapeability in Eigenstate Specification for Linear Systems
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Arlington, VA
.
31.
Khalil
,
H.
,
2001
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.