Mechanical and aerospace applications often require that mechanisms deploy in a quick stable and reliable way. The objective of this study is to implement a general optimization procedure to perform a first stage conceptual design of HSD mechanisms, focusing on both kinematics and dynamics. In particular, the authors will focus on the development of design charts. In the very first part of the work, a parametric lumped-mass system will be modeled in order to reduce the number of parameters for the synthesis phase. A correlation will be established between geometry, inertia and initial position to guarantee the maximum value of acceleration during deployment of the deployable arm by means of the principle of virtual work. In the second part of this work, the influence of important factors such as friction and joint clearance on the overall dynamics of the system will be investigated. Finally, a coupled dynamic and structural analysis of the helical spring, that actuates the mechanism, will be carried out in order to achieve optimal performance. The developed charts will also take into account the space limitation requirement, that are often needed for both aerospace and mechanical applications. A final example will summarize all the points covered by this research effort. Results will be validated using the commercial software ABAQUS.

References

1.
Mitsugi
,
J. E. A.
,
2000
, “
Deployment Analysis of Large Space Antenna Using Flexible Multibody Dynamics Simulation
,”
Acta Astron.
,
47
(
1
), pp.
19
26
.10.1016/S0094-5765(00)00014-X
2.
Dietz
,
S. E. A.
,
2003
, “
Nodal vs. Modal Representation in Flexible Multibody System Dynamics
,”
ECCOMAS Multibody Thematic Conference
.
3.
Rossoni
,
P. E. A.
,
2004
, “
Deployment Mechanism for the Space Technology 5 Micro Satellite
,”
Aerospace Mechanism Symposium
.
4.
Wallrapp
,
O.
, and
Wiedemann
,
S.
,
1998
, “
Simulation of Deployment of a Flexible Solar Array
,”
Multibody Syst. Dyn.
,
2
, pp.
1
24
.10.1023/A:1009759826529
5.
Powers
,
J.
,
Harris
,
J.
,
Etherton
,
J.
,
Ronaghi
,
M.
,
Snyder
,
K.
,
Lutz
,
T.
, and
Newbraugh
,
B.
,
2001
, “
Preventing Tractor Rollover Fatalities: Performance of the NIOSH AutoROPS
,” Injury Prevention.
6.
Powers
,
J.
,
Harris
,
J.
,
Etherton
,
J.
,
Ronaghi
,
M.
,
Snyder
,
K.
,
Lutz
,
T.
, and
Newbraugh
,
B.
,
2000
, “
Performance of an Automatically Deployable ROPS on ASAE Tests
,”
ASAE Annual Meeting
.
7.
McKenzie
,
E.
,
Ronaghi
,
M.
,
Powers
,
J.
, and
Lutz
,
T.
,
2008
, “
Implementing and Developing Industry Standards
,”
American Society of Safety Engineers
,
6
, pp.
58
62
. Available at: https://www.onepetro.org/conference-paper/ASSE-07-0341
8.
Ravn
,
P.
, A.,
1998
, “
A Continuous Analysis Method for Planar Multibody Systems With Joint Clearance
,”
Multibody Syst. Dyn.
,
2
, pp.
1
24
.10.1023/A:1009759826529
9.
Flores
,
P. A. J.
, and
Pimenta Claro
,
J.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
, pp.
47
74
.10.1023/B:MUBO.0000042901.74498.3a
10.
Valentini
,
P.
,
Stefanelli
,
R.
, and
Vita
,
L.
,
2005
, “
Modelling of Hydrodynamic Journal Bearing in Spatial Multibody Systems
,”
ASME International Design Engineering Technical Conferences
.
11.
Pezzuti
,
E.
,
Stefanelli
,
R.
,
Valentini
,
P.
, and
Vita
,
L.
,
2006
, “
Computer-Aided Simulation and Testing of Spatial Linkages With Joint Mechanical Errors
,”
Int. J. Numer. Methods Eng.
,
65
, pp.
1735
1748
.10.1002/nme.1507
12.
Brutti
,
C.
,
Valentini
,
P.
, and
Coglitore
,
G.
,
2011
, “
Modeling 3D Revolute Joint With Clearance and Contact Stiffness
,”
Nonlinear Dyn.
,
66
, pp.
531
548
.10.1007/s11071-010-9931-z
13.
Lee
,
J.
, and
Thompson
,
D.
,
2001
, “
Dynamic Stiffness Formulation, Free Vibration and Wave Motion of Helical Springs
,”
J. Sound Vib.
,
239
, pp.
237
320
.10.1006/jsvi.2000.3169
14.
Johnson
,
R.
,
1961
,
Optimum Design of Mechanical Elements
,
John Wiley & Sons
.
15.
Yildirim
,
V.
,
1998
, “
Investigation of Parameters Affecting Free Vibration Frequency of Helical Springs
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
99
114
.10.1002/(SICI)1097-0207(19960115)39:1<99::AID-NME850>3.0.CO;2-M
16.
Freudenstein
,
F.
,
Primrose
,
E.
,
Ray
,
S.
, and
Laks
,
B.
,
1976
, “
Velocity Fluctuations in Four-Bar Linkages and Slider-Crank Mechanisms
,”
ASME J. Eng. Indus.
,
98
(4), pp.
1255
1259
.10.1115/1.3439095
17.
Dukkipati
,
R.
, and
Osman
,
M.
,
1981
, “
Velocity Fluctuations in Spatia Slider-Crank Mechanisms
,”
Mech. Mach. Theory
,
16
, pp.
487
495
.10.1016/0094-114X(81)90020-3
18.
Freudenstein
,
F.
,
1956
, “
On the Maximum and Minimum Velocities and the Accelerations in Four-Link Mechanism
,”
Trans. ASME
,
78
, p.
779
.
19.
Wittenbauer
,
F.
,
1923
,
Graphische Dynamik
,
Verlag von Julius Springer
,
Berlin
.
You do not currently have access to this content.