Prior research suggests that set-based design representations can be useful for facilitating collaboration among engineers in a design project. However, existing set-based methods are limited in terms of how the sets are constructed and in their representational capability. The focus of this article is on the problem of modeling the capabilities of a component technology in a way that can be communicated and used in support of system-level decision making. The context is the system definition phases of a systems engineering project, when engineers still are considering various technical concepts. The approach under investigation requires engineers familiar with the component- or subsystem-level technologies to generate a set-based model of their achievable technical attributes, called a technology characterization model (TCM). Systems engineers then use these models to explore system-level alternatives and choose the combination of technologies that are best suited to the design problem. Previously, this approach was shown to be theoretically sound from a decision making perspective under idealized circumstances. This article is an investigation into the practical effectiveness of different TCM representational methods under realistic conditions such as having limited data. A power plant systems engineering problem is used as an example, with TCMs generated for different technical concepts for the condenser component. Samples of valid condenser realizations are used as inputs to the TCM representation methods. Two TCM representation methods are compared based on their solution accuracy and computational effort required: a Kriging-based interpolation and a machine learning technique called support vector domain description (SVDD). The results from this example hold that the SVDD-based method provides the better combination of accuracy and efficiency.

References

References
1.
Buede
,
D. M.
,
2000
,
The Engineering Design of Systems
,
John Wiley & Sons
,
New York
.
2.
Grady
,
J. O.
,
2006
,
System Requirements Analysis
,
Academic Press
,
Burlington, MA
.
3.
Sage
,
A. P.
, and
Armstrong
, Jr.
,
J. E.
,
2000
,
Introduction to Systems Engineering
,
Wiley and Sons
,
New York
.
4.
Collopy
,
P.
,
2007
, “
Adverse Impact of Extensive Attribute Requirements on the Design of Complex Systems
,”
7th AIAA Aviation Technology, Integration and Operations (ATIO) Conference
,
Belfast, Norther Ireland
, Paper No. AIAA 2007-7820.
5.
Malak
,
R. J.
, Jr.
,
2008
, “
Using Parameterized Efficient Sets to Model Alternatives for Systems Design Decisions
,” Ph.D. thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
6.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
,
2010
, “
Using Parameterized Pareto Sets to Model Design Concepts
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041007
.10.1115/1.4001345
7.
Malak
,
R. J.
, and
Galvan
,
E.
,
2010
, “
Using Predictive Modeling Techniques to Solve Multilevel Systems Design Problems
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
,
Fort Worth, TX
.
8.
Malak
,
R. J.
,
Tucker
,
L.
, and
Paredis
,
C. J. J.
,
2009
, “
Compositional Modeling of Fluid Power Systems Using Predictive Tradeoff Models
,”
Int. J. Fluid Power
,
10
(
2
), pp.
45
55
.
9.
Galvan
,
E.
, and
Malak
,
R. J.
,
2012
, “
A Genetic Algorithm Approach for Technology Characterization
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
, Paper No. DETC2012-70465.
10.
Ferguson
,
S.
,
Gurnani
,
A.
,
Donndelinger
,
J.
, and
Lewis
,
K. E.
,
2005
, “
A Study of Convergence and Mapping in Preliminary Vehicle Design
,”
Int. J. Veh. Syst. Modell. Test.
,
1
(
1/2/3
), pp.
192
215
.10.1504/IJVSMT.2005.008579
11.
Gurnani
,
A.
,
Ferguson
,
S.
,
Lewis
,
K. E.
, and
Donndelinger
,
J.
,
2006
, “
A Constraint-Based Approach to Feasibility Assessment in Preliminary Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
20
(
4
), pp.
351
367
.10.1017/S0890060406060252
12.
Mattson
,
C. A.
, and
Messac
,
A.
,
2003
, “
Concept Selection Using S-Pareto Frontiers
,”
AIAA J.
,
41
(
6
), pp.
1190
1198
.10.2514/2.2063
13.
Mattson
,
C. A.
, and
Messac
,
A.
,
2005
, “
Pareto Frontier Based Concept Selection Under Uncertainty With Visualization
,”
Optim. Eng.
,
6
(
1
), pp.
85
115
.10.1023/B:OPTE.0000048538.35456.45
14.
Tax
,
D. M. J.
, and
Duin
,
R. P. W.
,
1999
, “
Support Vector Domain Description
,”
Pattern Recogn. Lett.
,
20
, pp.
1191
1199
.10.1016/S0167-8655(99)00087-2
15.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
,
2010
, “
Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101001
.10.1115/1.4002151
16.
Beers
,
W. C. M. v.
, and
Kleijnen
,
J. P. C.
,
2004
, “
Kriging Interpolation in Simulation: A Survey
,”
Proceedings of the 36th Conference on Winter Simulation
,
Washington, DC
.
17.
Alexander
,
M. J.
,
Allison
,
J.
,
Papalambros
,
P. Y.
, and
Gorsich
,
D. J.
,
2011
, “
Constraint Management of Reduced Representation Variables in Decomposition-Based Design Optimization
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101014
.10.1115/1.4004976
18.
Scholkopf
,
B.
, and
Smola
,
J. A.
,
2002
, “
Learning With Kernels
,” MIT Press, Cambridge, MA.
19.
Stein
,
M. L.
,
1999
,
Interpolation of Spatial Data: Some Theory for Kriging
,
Springer
,
New York
.
20.
Cressie
,
N.
,
1990
, “
The Origins of Kriging
,”
Math. Geol.
,
22
(
3
), pp.
239
252
.10.1007/BF00889887
21.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
, “
DACE: A Matlab Kriging Toolbox
,” Informatics and Mathematical Modelling Department, Technical University of Denmark, Lyngby, Denmark.
22.
Tax
,
D. M. J.
, and
Laskov
,
P.
,
2003
, “
Online SVM Learning: From Classification to Data Description and Back
,” 2003 IEEE 13th Workshop on Neural Networks for Signal Processing, NNSP'03, pp.
499
508
.
23.
Roach
,
E.
,
Parker
,
R. R.
, and
Malak
,
R. J.
,
2011
, “
An Improved Support Vector Domain Description Method for Modeling Valid Search Domains in Engineering Design Problems
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, EC
.
24.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exhanger Design
,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
25.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2004
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
26.
Thurston
,
D. L.
,
1991
, “
A Formal Method for Subjective Design Evaluation With Multiple Attributes
,”
Res. Eng. Des.
,
3
(
2
), pp.
105
122
.10.1007/BF01581343
27.
Keeney
,
R.
, and
Raiffa
,
H.
,
1993
,
Decisions With Multiple Objectives: Preferences and Value Tradeoffs
,
Cambridge University Press
,
Cambridge, UK
.
28.
Parker
,
R.
,
2011
, “
Technology Characterization Models and Their Use in Complex Systems Design,
” Master of Science in Mechanical Engineering thesis,
Texas A&M University
,
College Station, TX
.
29.
Holmgren
,
M.
,
2006
, “
X Steam for Matlab
http://www.x-eng.com
30.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
31.
McCabe
,
W. L.
,
Smith
,
J. C.
, and
Harriott
,
P.
,
1993
,
Unit Operations of Chemical Engineering
,
McGraw-Hill
,
Singapore
.
32.
Singh
,
P.
,
Walker
,
J.
,
Lee
,
H. S.
,
Gharfeh
,
S.
,
Thomason
,
B.
, and
Blumer
,
D.
,
2007
, “
An Application of Vacuum-Insulated Tubing (VIT) for Wax Control in an Arctic Environment
,”
SPE Drill. Completion
,
22
(
2
), pp.
127
136
.
33.
Petukhov
,
B. S.
, and
Roizen
,
L. I.
,
1964
, “
Generalized Relationships for Heat Transfer in a Turbulent Flow of Gas in Tubes of Annular Section
,”
High Temp.
,
2
, pp.
65
68
.
34.
Kreider
,
J. F.
,
Curtiss
,
P. S.
, and
Rabl
,
A.
,
2010
,
Heating and Cooling of Buildings Design for Efficiency
(Mechanical Engineering Series),
CRC Press
,
Boca Raton, FL
.
35.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
2001
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
36.
Galvan
,
E.
,
2012
, “
A Genetic Algorithm Approach for Technology Characterization
,” M.S. thesis,
Texas A&M University
, College Station, TX.
37.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
38.
Zadeh
,
L.
,
1963
, “
Optimality and Non-Scalar-Valued Performance Criteria
,”
IEEE Trans. Autom. Control
,
8
(
1
), pp.
59
60
.10.1109/TAC.1963.1105511
39.
Das
,
I.
, and
Dennis
,
J. E.
,
1997
, “
A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Optim.
,
14
(
1
), pp.
63
69
.10.1007/BF01197559
40.
Ben-Hur
,
A.
,
Horn
,
D.
,
Siegelmann
,
H. T.
, and
Vapnik
,
V.
,
2002
, “
Support Vector Clustering
,”
J. Mach. Learn. Res.
,
2
, pp.
125
137
.
41.
Arendt
,
J.
,
Malak
,
R. J.
, and
McAdams
,
D. A.
,
2012
, “
Technology Evolution and Decision Making in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100904
. 10.1115/1.4007396
42.
Bily
,
C.
, and
Malak
,
R. J.
,
2012
, “
Efficient Sampling Methods for Tradeoff Studies Under Uncertainty
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
ASME
Paper No. DETC2012-70551. 10.1115/DETC2012-70551
43.
Bily
,
C.
, and
Malak
,
R. J.
,
2012
, “
Composing Tradeoff Studies Under Uncertainty Based on Parameterized Efficient Sets and Stochastic Dominance Principles
,”
SAE Int. J. Mater. Manuf.
,
5
(
2
), pp.
418
429
.
44.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
,
2009
, “
Modeling Design Concepts Under Risk and Uncertainty Using Parameterized Efficient Sets
,”
SAE Int. J. Mater. Manuf.
,
1
(
1
), pp.
339
352
.
You do not currently have access to this content.