This paper describes a framework for applying design for environment (DfE) within an industry setting. Our aim is to couple implicit design knowledge such as redesign/process constraints with quantitative measures of environmental performance to enable informed decision making. We do so by integrating life cycle assessment (LCA) and multicriteria decision analysis (MCDA). Specifically, the analytic hierarchy process (AHP) is used for prioritizing various levels of DfE strategies. The AHP network is formulated so as to improve the environmental performance of a product while considering business-related performance. Moreover, in a realistic industry setting, the onus of decision making often rests with a group, rather than an individual decision maker (DM). While conducting independent evaluations, experts often do not perfectly agree and no individual expert can be considered representative of the ground truth. Hence, we integrate a stochastic simulation module within the MCDA for assessing the variability in preferences among DMs. This variability in judgments is used as a metric for quantifying judgment reliability. A sensitivity analysis is also incorporated to explore the dependence of decisions on specific input preferences. Finally, the paper discusses the results of applying the proposed framework in a real-world case.

References

References
1.
Hundal
,
M.
,
2001
,
Integration of Eco-Design Into the Business: Mechanical Life Cycle Handbook
,
Marcel Dekker
,
New York
.
2.
Fiksel
,
J. R.
,
1996
,
Design for Environment: Creating Eco-Efficient Products and Processes
,
McGraw-Hill
,
New York
.
3.
Hundal
,
M. S.
,
1993
, “
Rules and Models for Low Cost Design
,”
Proceedings of the ASME Design for Manufacturability Conference
, pp.
50
63
.
4.
Robèrt
,
K.-H.
,
Schmidt-Bleek
,
B.
,
de Larderel
,
J. A.
,
Basile
,
G.
,
Jansen
,
J.
,
Kuehr
,
R.
,
Thomas
,
P. P.
,
Suzuki
,
M.
,
Hawken
,
P.
, and
Wackernagel
,
M.
,
2002
, “
Strategic Sustainable Development Selection, Design, and Synergies of Applied Tools
,”
J. Cleaner Prod.
,
10
(
3
), pp.
197
214
.10.1016/S0959-6526(01)00061-0
5.
Petrick
,
I. J.
, and
Echols
,
A. E.
,
2004
, “
Technology Roadmapping in Review: A Tool for Making Sustainable New Product Development Decisions
,”
Technol. Forecast. Soc. Change
,
71
(
1–2
), pp.
81
100
.10.1016/S0040-1625(03)00064-7
6.
Byggeth
,
S.
, and
Hochschorner
,
E.
,
2006
, “
Handling Trade-Offs in Ecodesign Tools for Sustainable Product Development and Procurement
,”
J. Cleaner Prod.
,
14
(
15–16
), pp.
1420
1430
.10.1016/j.jclepro.2005.03.024
7.
Masui
,
K.
,
2000
, “
New Method Developed for Design for Environment (DfE)
,” ECP Newsletter, No. 15.
8.
Brezet
,
H.
, and
van Hemel
,
C.
,
2001
, “
Ecodesign: Promising Approach to Sustainable Production and Consumption
,” Grid Arendal UNEP (press release Monday 28 April 1997). Available at: http://www.grida.no/news/press/1711.aspx
9.
Keoleian
,
G. A.
,
Menerey
,
D.
, and
Curran
,
M. A.
,
1993
, “
Life Cycle Design Guidance Manual
,” Vol. EPA600/R-92/226, EPA, Cincinnati, OH.
10.
Nelson
, II,
S. A.
,
Parkinson
,
M. B.
, and
Papalambros
,
P. Y.
,
2001
, “
Multicriteria Optimization in Product Platform Design
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
199
204
.10.1115/1.1355775
11.
Cooper
,
A. B.
,
Georgiopoulos
,
P.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
,
2006
, “
Analytical Target Setting: An Enterprise Context in Optimal Product Design
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
4
13
.10.1115/1.2125972
12.
Chung
,
C. C.-W.
,
Choi
,
J.-K.
,
Ramani
,
K.
, and
Patwardhan
,
H.
,
2005
, “
Product Node Architecture: A Systematic Approach to Provide Structured Flexibility in Distributed Product Development
,”
Concurr. Eng. Res. Appl.
,
13
(
3
), pp.
219
232
.10.1177/1063293X05056472
13.
Thurston
,
D. L.
, and
Srinivasan
,
S.
,
2003
, “
Constrained Optimization for Green Engineering Decision-Making
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5389
5397
.10.1021/es0344359
14.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
,
2006
, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.10.1115/1.2336252
15.
Skerlos
,
S. J.
, and
Zhao
,
F.
,
2003
, “
Economic Considerations in the Implementation of Microfiltration for Metalworking Fluid Biological Control
,”
J. Manuf. Syst.
,
22
(
3
), pp.
202
219
.10.1016/S0278-6125(03)90021-5
16.
Curran
,
M. A.
,
2004
, “
The Status of Life-Cycle Assessment as an Environmental Management Tool
,”
Environ. Prog.
,
23
(
4
), pp.
277
283
.10.1002/ep.10046
17.
Weber
,
M.
, and
Borcherding
,
K.
,
1993
, “
Behavioral Influences on Weight Judgments in Multiattribute Decision Making
,”
Eur. J. Oper. Res.
,
67
(
1
), pp.
1
12
.10.1016/0377-2217(93)90318-H
18.
Guinée
,
J. B.
, and
Heijungs
,
R.
,
2000
,
Life Cycle Assessment
,
John Wiley and Sons, Inc.
,
New York
.
19.
Werner
,
F.
, and
Scholz
,
R.
,
2002
, “
Ambiguities in Decision-Oriented Life Cycle Inventories the Role of Mental Models
,”
Int. J. Life Cycle Assess.
,
7
, pp.
330
338
.
20.
Rogers
,
K.
, and
Seager
,
T. P.
,
2009
, “
Environmental Decision-Making Using Life Cycle Impact Assessment and Stochastic Multiattribute Decision Analysis: A Case Study on Alternative Transportation Fuels
,”
Environ. Sci. Technol.
,
43
(6)
, pp.
1718
1723
.
21.
Liu
,
K.
,
2007
, “
Evaluating Environmental Sustainability: An Integration of Multiple-Criteria Decision-Making and Fuzzy Logic
,”
Environ. Manage. (N.Y.)
,
39
, pp.
721
736
.10.1007/s00267-005-0395-8
22.
Dorini
,
G.
,
Kapelan
,
Z.
, and
Azapagic
,
A.
,
2011
, “
Managing Uncertainty in Multiple-Criteria Decision Making Related to Sustainability Assessment
,”
Clean Technol. Environ. Policy
,
13
, pp.
133
139
.10.1007/s10098-010-0291-7
23.
Eagan
,
P.
, and
Weinberg
,
L.
,
1999
, “
Application of Analytic Hierarchy Process Techniques to Streamlined Life-Cycle Analysis of Two Anodizing Processes
,”
Environ. Sci. Technol.
,
33
(
9
), pp.
1495
1500
.10.1021/es9807338
24.
Papalexandrou
,
M.
,
Pilavachi
,
P.
, and
Chatzimouratidis
,
A.
,
2008
, “
Evaluation of Liquid Bio-Fuels Using the Analytic Hierarchy Process
,”
Process Saf. Environ. Prot.
,
86
(
5
), pp.
360
374
.10.1016/j.psep.2008.03.003
25.
Mohamadabadi
,
H. S.
,
Tichkowsky
,
G.
, and
Kumar
,
A.
,
2009
, “
Development of a Multi-Criteria Assessment Model for Ranking of Renewable and Non-Renewable Transportation Fuel Vehicles
,”
Energy
,
34
(
1
), pp.
112
125
.10.1016/j.energy.2008.09.004
26.
Hermann
,
B.
,
Kroeze
,
C.
, and
Jawjit
,
W.
,
2007
, “
Assessing Environmental Performance by Combining Life Cycle Assessment, Multi-Criteria Analysis and Environmental Performance Indicators
,”
J. Cleaner Prod.
,
15
(
18
), pp.
1787
1796
.10.1016/j.jclepro.2006.04.004
27.
Khan
,
F.
,
Sadiq
,
R.
, and
Veitch
,
B.
,
2004
, “
Life Cycle Index (LInX): A New Indexing Procedure for Process and Product Design and Decision-Making
,”
J. Cleaner Prod.
,
12
(
1
), pp.
59
76
.10.1016/S0959-6526(02)00194-4
28.
Weil
,
M.
,
Jeske
,
U.
,
Dombrowski
,
K.
, and
Buchwald
,
A.
,
2007
, “
Sustainable Design of Geopolymers—Evaluation of Raw Materials by the Integration of Economic and Environmental Aspects in the Early Phases of Material Development
,”
Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses
,
S.
Takata
and
Y.
Umeda
, eds.,
Springer
,
London
, pp.
279
283
.
29.
Xiong
,
Y.
,
Lau
,
K.
,
Zhou
,
X.
, and
Schoenung
,
J. M.
,
2008
, “
A Streamlined Life Cycle Assessment on the Fabrication of WCCO Cermets
,”
J. Cleaner Prod.
,
16
(
10
), pp.
1118
1126
.10.1016/j.jclepro.2007.05.007
30.
Huang
,
H.
,
Liu
,
Z.
,
Zhang
,
L.
, and
Sutherland
,
J.
,
2009
, “
Materials Selection for Environmentally Conscious Design Via a Proposed Life Cycle Environmental Performance Index
,”
Int. J. Adv. Manuf. Technol.
,
44
, pp.
1073
1082
.10.1007/s00170-009-1935-9
31.
Kiker
,
G. A.
,
Bridges
,
T. S.
,
Varghese
,
A.
,
Seager
,
T. P.
, and
Linkov
,
I.
,
2005
, “
Application of Multicriteria Decision Analysis in Environmental Decision Making
,”
Integr. Environ. Assess. Manage.
,
1
(
2
), pp.
95
108
.10.1897/IEAM_2004a-015.1
32.
Chan
,
K.-Y.
,
Skerlos
,
S.
, and
Papalambros
,
P. Y.
,
2006
, “
Monotonicity and Active Set Strategies in Probabilistic Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
893
900
.10.1115/1.2202887
33.
MacDonald
,
E. F.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2009
, “
Preference Inconsistency in Multidisciplinary Design Decision Making
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031009
.10.1115/1.3066526
34.
DeLaurentis
,
D. A.
, and
Mavris
,
D. N.
,
2000
, “
Uncertainty Modeling and Management in Multidisciplinary Analysis and Synthesis
,” AIAA Aerospace Sciences Meeting, Paper No. AIAA-2000–422.
35.
Duncan
,
S. J.
,
Bras
,
B.
, and
Paredis
,
C. J.
,
2008
, “
An Approach to Robust Decision Making Under Severe Uncertainty in Life Cycle Design
,”
Int. J. Sustainable Energy
,
1
(
1
), pp.
45
59
.
36.
Keeney
,
R. L.
,
1982
, “
Feature Article Decision Analysis: An Overview
,”
Oper. Res.
,
30
(
5
), pp.
803
838
.10.1287/opre.30.5.803
37.
Choi
,
J. K.
,
Nies
,
L. F.
, and
Ramani
,
K.
,
2008
, “
A Framework for the Integration of Environmental and Business Aspects Toward Sustainable Product Development
,”
J. Eng. Design
,
19
(
5
), pp.
431
446
.10.1080/09544820701749116
38.
Consoli
,
F.
,
Allen
,
D.
,
Bounstead
,
I.
,
Fava
,
J.
,
Franklin
,
W.
,
Jensen
,
A. A.
,
de Oude
,
N.
,
Parirish
,
R.
,
Perriman
,
R.
,
Postlethwaite
,
D.
,
Quay
,
B.
,
Seguin
,
J.
, and
Vigon
,
B.
,
1993
,
Guidelines for Life-Cycle assessment: A Code of Practice
,
Society of Environmental Toxicology and Chemistry, (SETAC)
,
Pensacola, FL
.
39.
Miller
,
R. E.
, and
Blair
,
P. D.
,
1985
,
Input-Output Analysis: Foundations and Extensions
,
Cambridge University Press
,
New York
.
40.
Lave
,
L. B.
,
Cobas-Flores
,
E.
,
Hendrickson
,
C. T.
, and
McMichael
,
F. C.
,
1995
, “
Using Input-Output Analysis to Estimate Economy-Wide Discharges
,”
Environ. Sci. Technol.
,
29
(
9
), pp.
420A
426A
.
41.
Bullard
,
C. W.
,
Penner
,
P. S.
, and
Pilati
,
D. A.
,
1978
, “
Net Energy Analysis: Handbook for Combining Process and Input-Output Analysis
,”
Resour. Energy
,
1
(
3
), pp.
267
313
.10.1016/0165-0572(78)90008-7
42.
Graedel
,
T. E.
, and
Allenby
,
B.
,
2002
,
Industrial Ecology
,
Prentice-Hall
,
Englewood Cliffs, NY
.
43.
Baumman
,
H.
, and
Tillman
,
A.
,
2004
,
The Hitch Hikers Guide to LCA: An Orientation in Life Cycle Assessment Methodology and Application
,
Studentlitteratur
,
Lund, Sweden
.
44.
Saaty
,
T.
,
1980
,
The Analytic Hierarchy Process
,
McGraw-Hill
,
New York
.
45.
Alting
,
L.
,
1995
, “
Environmental Assessment of Industrial Products
,”
CIRP Ann.
, pp.
533
534
.
46.
Bernstein
,
W. Z.
,
Ramanujan
,
D.
,
Devanathan
,
S.
,
Zhao
,
F.
,
Sutherland
,
J.
, and
Ramani
,
K.
,
2010
, “
Function Impact Matrix for Sustainable Concept Generation: A Designer’s Perspective
,”
ASME Conference Proceedings
, Vol.
2010
(
44144
), pp.
377
383
.
47.
Potvin
,
C.
, and
Roff
,
D. A.
,
1993
, “
Distribution-Free and Robust Statistical Methods: Viable Alternatives to Parametric Statistics?
,”
Ecology
,
74
(
6
), pp.
1997–1998
.10.2307/1939920
48.
Banuelas
,
R.
, and
Antony
,
J.
,
2004
, “
Modified Analytic Hierarchy Process to Incorporate Uncertainty and Managerial Aspects
,”
Int. J. Prod. Res.
,
42
(
18
), pp.
3851
3872
.10.1080/00207540410001699183
49.
Levary
,
R. R.
, and
Wan
,
K.
,
1998
, “
A Simulation Approach for Handling Uncertainty in the Analytic Hierarchy Process
,”
Eur. J. Oper. Res.
,
106
(
1
), pp.
116
122
.10.1016/S0377-2217(97)00134-3
50.
Ecoinvent
,
2006
, “
Ecoinvent Life Cycle Inventory Data
.
51.
Goedkoop, M.
,
Oele, M.
,
de Schryver, A.
,
Vieira, M.
,
2008
, SimaPro Database Manual Methods Library, PRé Consultants, The Netherlands.
52.
Hesterberg
,
T.
,
Moore
,
D. S.
,
Monaghan
,
S.
,
Clipson
,
A.
, and
Epstein
,
R.
,
2005
,
Bootstrap Methods and Permutation Tests
,
W. H. Freeman and Company
,
New York
.
53.
Lilliefors
,
H. W.
,
1967
, “
On the Kolmogorov-Smirnov Test for Normality With Mean and Variance Unknown
,”
J. Am. Stat. Assoc.
,
62
(
318
), pp.
399–402
.10.1080/01621459.1967.10482916
You do not currently have access to this content.