The scientific and industrial communities have begun investigating the possibility of making product recovery economically viable. Disassembly sequence planning may be used to make end-of-life product take-back processes more cost effective. Much of the research involving disassembly sequence planning relies on mathematical optimization models. These models often require input data that is unavailable or can only be approximated with high uncertainty. In addition, there are few mathematical models that include consideration of the potential of product damage during disassembly operations. The emergence of Immersive Computing Technologies (ICT) enables designers to evaluate products without the need for physical prototypes. Utilizing unique 3D user interfaces, designers can investigate a multitude of potential disassembly operations without resorting to disassembly of actual products. The information obtained through immersive simulation can be used to determine the optimum disassembly sequence. The aim of this work is to apply a decision analytical approach in combination with immersive computing technology to optimize the disassembly sequence while considering trade-offs between two conflicting attributes: disassembly cost and damage estimation during disassembly operations. A wooden Burr puzzle is used as an example product test case. Immersive human computer interaction is used to determine input values for key variables in the mathematical model. The results demonstrate that the use of dynamic programming algorithms coupled with virtual disassembly simulation is an effective method for evaluating multiple attributes in disassembly sequence planning. This paper presents a decision analytical approach, combined with immersive computing techniques, to optimize the disassembly sequence. Future work will concentrate on creating better methods of estimating damage in virtual disassembly environments and using the immersive technology to further explore the feasible design space.

References

References
1.
Giudice
,
F.
, and
Kassem
,
M.
,
2009
, “
End-of-Life Impact Reduction Through Analysis and Redistribution of Disassembly Depth: A Case Study in Electronic Device Redesign
,”
Comput. Ind. Eng.
,
57
(
3
), pp.
677
690
.10.1016/j.cie.2009.01.007
2.
Lambert
,
A. J. D.
,
2003
, “
Disassembly Sequencing: A Survey
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3721
3759
.10.1080/0020754031000120078
3.
Pomares
,
J.
,
Puente
,
S. T.
,
Torres
,
F.
,
Candelas
,
F. A.
, and
Gil
,
P.
,
2004
, “
Virtual Disassembly of Products Based on Geometric Models
,”
Comput. Ind.
,
55
(
1
), pp.
1
14
.10.1016/j.compind.2004.03.001
4.
Li
,
J. R.
,
Khoo
,
L. P.
, and
Tor
,
S. B.
,
2003
, “
Desktop Virtual Reality for Maintenance Training: an Object Oriented Prototype System (V-REALISM)
,”
Comput. Ind.
,
52
(
2
), pp.
109
125
.10.1016/S0166-3615(03)00103-9
5.
Hula
,
A.
,
Jalali
,
K.
,
Hamza
,
K.
,
Skerlos
,
S. J.
, and
Saitou
,
K.
,
2003
, “
Multi-Criteria Decision-Making for Optimization of Product Disassembly under Multiple Situations
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5303
5313
.10.1021/es0345423
6.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2006
, “
Ant Colony Optimization for Disassembly Sequencing With Multiple Objectives
,”
Int. J. Adv. Manuf. Technol.
,
30
(
5-6
), pp.
481
496
.10.1007/s00170-005-0037-6
7.
Lee
,
D.-H.
,
Xirouchakis
,
P.
, and
Zust
,
R.
,
2002
, “
Disassembly Scheduling With Capacity Constraints
,”
CIRP Ann.
,
51
(
1
), pp.
387
390
.10.1016/S0007-8506(07)61543-1
8.
Kang
,
J.-G.
, and
Xirouchakis
,
P.
,
2006
, “
Disassembly Sequencing for Maintenance: A Survey
,”
Proc. Inst. Mech. Eng., Part B (J. Eng. Manuf.)
,
220
(
B10
), pp.
1697
1716
.10.1243/09544054JEM596
9.
Gonzalez-Torre
,
B.
, and
Adenso-Diaz
,
B.
,
2003
, “
Optimizing Decision Making at the End of Life of a Product
,”
Proc. SPIE
5262
, pp.
40
50
.10.1117/12.515493
10.
Kara
,
S.
,
Pornprasitpol
,
P.
, and
Kaebernick
,
H.
,
2005
, “
A Selective Disassembly Methodology for End-of-Life Products
,”
Assem. Autom.
,
25
(
2
), pp.
124
134
.10.1108/01445150510590488
11.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041002
.10.1115/1.4001207
12.
Behdad
,
S.
, and
Thurston
,
D.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance
,”
ASME J. Mech. Des.
,
134
(
4
), p.
040201
.10.1115/1.4006445
13.
Jayaram
,
S.
,
Jayaram
,
U.
,
Kim
,
Y. J.
,
DeChenne
,
C.
,
Lyons
,
K. W.
,
Palmer
,
C.
, and
Mitsui
,
T.
,
2007
, “
Industry Case Studies in the Use of Immersive Virtual Assembly
,”
Virtual Reality
,
11
(
4
), pp.
217
228
.10.1007/s10055-007-0070-x
14.
Seth
,
A.
,
Vance
,
J. M.
, and
Oliver
,
J. H.
,
2011
, “
Virtual Reality for Assembly Methods Prototyping: A Review
,”
Virtual Reality
,
15
(
1
), pp.
5
20
.10.1007/s10055-009-0153-y
15.
Jayaram
,
S.
,
Connacher
,
H. I.
, and
Lyons
,
K. W.
,
1997
, “
Virtual Assembly Using Virtual Reality Techniques
,”
CAD
,
29
(
8
), pp.
575
584
.10.1016/S0010-4485(96)00094-2
16.
Seth
,
A.
,
Su
,
H.-J.
, and
Vance
,
J. M.
,
2006
, “
Sharp: A System for Haptic Assembly Realistic Prototyping BT
,”
2006 ASME International Design Engineering Technical Conferences and Computers and Information In Engineering Conference, American Society of Mechanical Engineers, Department of Mechanical Engineering, Virtual Reality Applications Center, Iowa State University
,
Ames, IA
, Paper No. DETC2006.
17.
Lin
,
M. C.
, and
Manocha
,
D.
,
1995
, “
Fast Interference Detection Between Geometric Models
,”
Visual Comput.
,
11
(
10
), pp.
542
561
.10.1007/BF02434040
18.
Jimenez
,
P.
,
Thomas
,
F.
, and
Torras
,
C.
,
2001
, “
3D Collision Detection: A Survey
,”
Comput. Graphics
,
25
(
2
), pp.
269
285
.10.1016/S0097-8493(00)00130-8
19.
Borro
,
D.
,
Hernantes
,
J.
,
Garcia-Alonso
,
A.
, and
Matey
,
L.
,
2005
, “
Collision Problem: Characteristics for a Taxonomy
,”
Proceedings. Ninth International Conference on Information Visualisation, IEEE Comput. Soc, Ceit, Manuel de Lardizabal
,
San Sebastian, Spain
, July 6–8, BN–0 7695 2397 8, pp.
410
415
.
20.
Kim
,
C. E.
, and
Vance
,
J. M.
,
2004
, “
Collision Detection and Part Interaction Modeling to Facilitate Immersive Virtual Assembly Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
2
), pp.
83
90
.10.1115/1.1738125
21.
Faas
,
D.
, and
Vance
,
J. M.
,
2010
, “
Assessment of Pointshell Shrinking and Feature Size on Virtual Manual Assembly
,”
ASME 2010 World Conference on Innovative Virtual Reality, American Society of Mechanical Engineers, Department of Mechanical Engineering, Virtual Reality Applications Center, Iowa State University
,
Ames, IA
, May 12–14, WINVR 2010, pp.
211
218
.
22.
Seth
,
A.
,
Vance
,
J. M.
, and
Oliver
,
J. H.
,
2010
, “
Combining Dynamic Modeling With Geometric Constraint Management To Support Low Clearance Virtual Manual Assembly
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081002
.10.1115/1.4001565
23.
Dong
,
J.
, and
Arndt
,
G.
,
2003
, “
A Review of Current Research on Disassembly Sequence Generation and Computer Aided Design for Disassembly
,”
Proc. Inst. Mech. Eng., Part B (J. Eng. Manuf.)
,
217
(
B3
), pp.
299
312
.10.1243/095440503321590479
24.
Ritchie
,
J.
,
Simmons
,
J.
,
Dewar
,
R.
, and
Carpenter
,
I.
,
1999
, “
A Methodology for Eliciting Expert Knowledge in Virtual Engineering Environments
,”
Proceedings of Portland International Conference on Management of Engineering and Technology, Portland Int. Conf. Manage. Eng. Technol. PICMET, Dept. of Mech. Chem. Eng., Heriot-Watt Univ.
,
Edinburgh, UK
, July 25–29, Vol. 1, BN–1 890843 02 4, p. 202.
25.
Dewar
,
R. G.
,
Carpenter
,
I. D.
,
Ritchie
,
J. M.
, and
Simmons
,
J. E. L.
,
1997
, “
Assembly Planning in a Virtual Environment
,”
Innovation in Technology Management. The Key to Global Leadership. PICMET ‘97, IEEE, Dept. of Mech. Chem. Eng., Heriot-Watt Univ.
,
Edinburgh, UK
, July 27–31, BN–0 7803 3574 0, pp.
664
667
.
26.
Bullinger
,
H. J.
,
Richter
,
M.
, and
Seidel
,
K.-A.
,
2000
, “
Virtual Assembly Planning
,”
Hum. Factors Ergon. Manuf.
,
10
(
3
), pp.
331
341
.10.1002/1520-6564(200022)10:3<331::AID-HFM7>3.0.CO;2-D
27.
Aleotti
,
J.
, and
Caselli
,
S.
,
2011
, “
Physics-Based Virtual Reality for Task Learning and Intelligent Disassembly Planning
,”
Virtual Reality
,
15
(
1
), pp.
41
54
.10.1007/s10055-009-0145-y
28.
Mattson
,
C. A.
, and
Messac
,
A.
,
2005
, “
Pareto Frontier Based Concept Selection Under Uncertainty, With Visualization
,”
Optim. Eng.
,
6
(
1
), pp.
85
115
.10.1023/B:OPTE.0000048538.35456.45
29.
Sengupta
,
M.
, and
Styblinski
,
M. A.
,
1997
, “
Visualization of Trade-Offs in Optimization of Integrated Circuits With Multiple Objectives
,”
Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS ‘97, IEEE, Dept. of Electr. Eng., Texas AM Univ.
,
College Station, TX
, June 9–12, BN–0 7803 3583 X, pp.
1640
1643
.
30.
Thurston
,
D. L.
,
1991
, “
A Formal Method for Subjective Design Evaluation With Multiple Attributes
,”
Res. Eng. Des.
,
3
(
2
), pp.
105
122
.10.1007/BF01581343
31.
Thurston
,
D. L.
,
2001
, “
Real and Misconceived Limitations to Decision Based Design With Utility Analysis
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
176
182
.10.1115/1.1363610
32.
Bellman
,
R. E.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
33.
Tian
,
Y. Q.
,
Thurston
,
D. L.
, and
Carnahan
,
J. V.
,
1994
, “
Incorporating End-User's Attitudes Towards Uncertainty Into an Expert System
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
493
500
.10.1115/1.2919406
34.
Pan
,
J.
,
Zhang
,
L.
, and
Manocha
,
D.
,
2012
, “
Collision-Free and Smooth Trajectory Computation in Cluttered Environments
,”
Int. J. Rob. Res.
,
31
(
10
), pp.
1155
1175
.10.1177/0278364912453186
35.
Lauterbach
,
C.
,
Mo
,
Q.
, and
Manocha
,
D.
,
2010
, “
gProximity: Hierarchical GPU-Based Operations for Collision and Distance Queries
,”
Comput. Graph. Forum
,
29
(
2
), pp.
419
428
.10.1111/j.1467-8659.2009.01611.x
36.
Zhang
,
L.
,
Huang
,
X.
,
Kim
,
Y. J.
, and
Manocha
,
D.
,
2008
, “
D-Plan: Efficient Collision-Free Path Computation for Part Removal and Disassembly
,”
Comput.-Aided Des. Appl.
,
5
(
6
), pp.
774
786
.10.3722/cadaps.2008.774-786
37.
Tang
,
Y.
,
Zhou
,
M.
, and
Gao
,
M.
,
2006
, “
Fuzzy-Petri-Net-Based Disassembly Planning Considering Human Factors
,”
IEEE Trans. Syst., Man Cybern., Part A Syst. Humans
,
36
(
4
), pp.
718
726
.10.1109/TSMCA.2005.853508
38.
Thurston
,
D.
,
2006
, “
Multi-Attribute Utility Analysis of Conflicting Preferences
,”
Decision Making in Engineering Design
,
K.
Lewis
,
W.
Chen
, and
L. C.
Schmidt
, eds.,
ASME Press
,
New York
.
You do not currently have access to this content.