This paper reports on a linear actuation mechanism in the form of a parallel-crank mechanism (i.e., double-crank mechanism) articulated with two dielectric elastomer actuators working in parallel that are fabricated as a minimum energy structure. This structure is established by stretching a dielectric elastomer (DE) film (VHB4910) over a polyethylene terephthalate (PET) frame so that the energy released from the stretched DE film is stored in the frame as bending energy. The mechanism can output a translational motion under a driving voltage applied between two electrodes of the DE film. We have proposed visco-elastic models for the DE film and the frame of the actuator so that the mechanical properties of the actuator can more accurately be incorporated into the mechanism model. The proposed model accurately predicts the experimental frequency response of the mechanism at different voltages. In addition, an inversion-based feedforward controller was successfully implemented in order to further validate the proposed model for sensorless position control of the actuators and the parallel-crank mechanism articulated with these actuators.

References

References
1.
Bar-Cohen
,
Y.
,
2004
,
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges
,
2nd ed.
, SPIE Press, Bellingham, WA.
2.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%,
Science
,
287
, pp.
836
839
.10.1126/science.287.5454.836
3.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromolecular Rapid Communications
,
31
, pp.
10
36
.10.1002/marc.200900425
4.
Chuc
,
N. H.
,
Koo
,
J. C.
,
Lee
,
Y. K.
,
Nam
,
J.
, and
Choi
,
H. R.
,
2008
, “
Artificial Muscle Actuator Based on the Synthetic Elastomer
,”
Int. J. Control Autom. Syst.
,
6
, pp.
894
903
.
5.
Nguyen
,
C. H.
,
Vuong
,
N. H. L.
,
Kim
,
D. S.
,
Moon
,
H. P.
,
Koo
,
J. C.
,
Young Kwan
,
L.
, Nam, J.-D., and Choi, H. R.,
2011
, “
Fabrication and Control of Rectilinear Artificial Muscle Actuator
,”
IEEE/ASME Trans. Mechatronics
,
16
, pp.
167
176
.10.1109/TMECH.2009.2038223
6.
Choi
,
H. R.
,
Jung
,
K.
,
Ryew
,
S.
,
Nam
,
J.-D.
,
JaeWook
,
J.
,
Koo
,
J. C.
, and Tanie, K.,
2005
, “
Biomimetic Soft Actuator: Design, Modeling, Control, and Applications
,”
IEEE/ASME Trans. Mechatronics
,
10
, pp.
581
593
.10.1109/TMECH.2005.856108
7.
Kovacs
,
G.
,
Düring
,
L.
,
Michel
,
S.
, and
Terrasi
,
G.
,
2009
, “
Stacked Dielectric Elastomer Actuator for Tensile Force Transmission
,”
Sens. Actuators A: Phys.
,
155
, pp.
299
307
.10.1016/j.sna.2009.08.027
8.
Pei
,
Q.
,
Pelrine
,
R.
,
Stanford
,
S.
,
Kornbluh
,
R.
, and
Rosenthal
,
M.
,
2003
, “
Electroelastomer Rolls and Their Application for Biomimetic Walking Robots
,”
Synth. Metals
,
135–136
, pp.
129
131
,
2003
.10.1016/S0379-6779(02)00535-0
9.
Jung
,
K.
,
Ja Choo
,
K.
,
Nam
,
J.-D.
,
Lee
,
Y. K.
, and
Choi
,
H. R.
,
2007
, “
Artificial Annelid Robot Driven by Soft Actuators
,”
Bioinspiration Biomimetics
,
2
, pp.
S42
–S49.10.1088/1748-3182/2/2/S05
10.
Kofod
,
G.
,
Wirges
,
W.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2007
, “
Energy Minimization for Self-Organized Structure Formation and Actuation
,”
Appl. Phys. Lett.
,
90
, p.
081916
.10.1063/1.2695785
11.
Plante
,
J. S.
,
2006
, “
Dielectric Elastomer Actuators for Binary Robotics and Mechatronics
,” Doctor of Philosophy, Mechanical Engineering, Massachusetts Institute of Technology.
12.
Chouinard
,
P.
, and
Plante
,
J.
,
2012
, “
Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics
,”
IEEE/ASME Trans. Mechatronics
,
17
, pp.
857
865
.10.1109/TMECH.2011.2135862
13.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Parenti-Castelli
,
V.
,
2011
, “
Optimal Synthesis of Conically Shaped Dielectric Elastomer Linear Actuators: Design Methodology and Experimental Validation
,”
IEEE/ASME Trans. Mechatronics
,
16
, pp.
67
79
.10.1109/TMECH.2010.2090664
14.
Carpi
,
F.
,
Frediani
,
G.
, and
Rossi
,
D.
,
2012
, “
Contractile Hydrostatically Coupled Dielectric Elastomer Actuators
,”
IEEE/ASME Trans. Mechatronics
,
17
, pp.
987
994
.10.1109/TMECH.2011.2141145
15.
O'Brien
,
B.
,
Calius
,
E.
,
Xie
,
S.
, and
Anderson
,
I.
,
2008
, “
An Experimentally Validated Model of a Dielectric Elastomer Bending Actuator
,” Proc. SPIE 6927, Electroactive Polymer Actuators and Devices (
EAPAD
) 2008, p.
69270T
.10.1117/12.776098
16.
Jones
,
R. W.
, and
Sarban
,
R.
,
2012
, “
Inverse Grey-Box Model-Based Control of a Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
21
, p.
075019
.10.1088/0964-1726/21/7/075019
17.
Sarban
,
R.
, and
Jones
,
R. W.
,
2012
, “
Physical Model-Based Active Vibration Control Using a Dielectric Elastomer Actuator
,”
J. Intelligent Mater. Syst. Struct.
, 23(4), pp. 473–483.
18.
John
,
S. W.
,
Alici
,
G.
, and
Cook
,
C. D.
,
2010
, “
Inversion-Based Feedforward Control of Polypyrrole Trilayer Bender Actuators
,”
IEEE/ASME Trans. Mechatronics
,
15
, pp.
149
156
.10.1109/TMECH.2009.2020732
19.
Kofod
,
G.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2006
, “
Self-Organized Minimum-Energy Structures for Dielectric Elastomer Actuators
,”
Appl. Phys. A
,
85
, pp.
141
143
.10.1007/s00339-006-3680-3
20.
Timoshenko
,
S.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
11
, pp.
233
255
.10.1364/JOSA.11.000233
21.
Lai
,
W.
,
Bastawros
,
A. F.
,
Wei
,
H.
, and
Soon-Jo
,
C.
,
2012
, “
Fabrication and Analysis of Planar Dielectric Elastomer Actuators Capable of Complex 3-D Deformation
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
4968
4973
.
22.
Alves
,
N. M.
,
Ribelles
,
J. L. G.
, and
Mano
,
J. F.
,
2003
, “
Study of the Viscoelastic Properties of PET by Thermally Stimulated Recovery
,”
Plast., Rubber Compos.
,
32
, pp.
281
290
.10.1179/146580103225003442
23.
Nguyen
,
C. H.
,
Alici
,
G.
, and
Wallace
,
G. G.
,
2013
, “
An Advanced Mathematical Model and Its Experimental Verification for Tri-Layer Conjugated Polymer Actuators
,” IEEE/ASME Trans.
Mechatronics
, (in press).10.1109/TMECH.2013.2280012
24.
O'Brien
,
B.
,
McKay
,
T.
,
Calius
,
E.
,
Xie
,
S.
, and
Anderson
,
I.
,
2009
, “
Finite Element Modelling of Dielectric Elastomer Minimum Energy Structures
,”
Appl. Phys. A
,
94
, pp.
507
514
.10.1007/s00339-008-4946-8
25.
Nguyen
,
C. H.
,
Alici
,
G.
, and
Wallace
,
G. G.
,
2012
, “
Modelling Trilayer Conjugated Polymer Actuators for Their Sensorless Position Control
,”
Sens. Actuators: A, Phys.
,
185
, pp.
82
91
.10.1016/j.sna.2012.07.018
26.
Lee
,
H.
, and
Utkin
,
V. I.
,
2007
, “
Chattering Suppression Methods in Sliding Mode Control Systems
,”
Ann. Rev. Control
,
31
, pp.
179
188
.10.1016/j.arcontrol.2007.08.001
27.
Wissler
,
M.
, and
Mazza
,
E.
,
2007
, “
Mechanical Behavior of an Acrylic Elastomer Used in Dielectric Elastomer Actuators
,”
Sens. Actuators A: Phys.
,
134
, pp.
494
504
.10.1016/j.sna.2006.05.024
28.
Kornbluh
,
R.
,
2000
, “
Ultrahigh Strain Response of Field-Actuated Elastomeric Polymers
,”
Proc. SPIE
,
3987
, pp.
51
63
.10.1117/12.387763
29.
Plante
,
J.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25
), pp.
7727
7751
.10.1016/j.ijsolstr.2006.03.026
30.
Rosset
,
S.
,
Niklaus
,
M.
,
Dubois
,
P.
, and
Shea
,
H. R.
,
2009
, “
Large-Stroke Dielectric Elastomer Actuators With Ion-Implanted Electrodes
,”
J. Microelectromech. Syst.
,
18
(
6
), pp.
1300
1308
.10.1109/JMEMS.2009.2031690
31.
Rosset
,
S.
, and
Shea
,
H. R.
,
2013
, “
Flexible and Stretchable Electrodes for Dielectric Elastomer Actuators
,”
Appl. Phys. A-Mater. Sci. Process.
,
110
(
2
), pp.
281
307
.10.1007/s00339-012-7402-8
32.
Kim
,
K. J.
, and
Tadokoro
,
S.
,
2007
,
Electroactive Polymers for Robotic Application: Artificial Muscles and Sensors
,
Springer
,
London
.
You do not currently have access to this content.