Research in systems engineering and design is increasingly focused on complex sociotechnical systems whose structures are not directly controlled by the designers, but evolve endogenously as a result of decisions and behaviors of self-directed entities. Examples of such systems include smart electric grids, Internet, smart transportation networks, and open source product development communities. To influence the structure and performance of such systems, it is crucial to understand the local decisions that result in observed system structures. This paper presents three approaches to estimate the local behaviors and preferences in complex evolutionary systems, modeled as networks, from its structure at different time steps. The first approach is based on the generalized preferential attachment model of network evolution. In the second approach, statistical regression-based models are used to estimate the local decision-making behaviors from consecutive snapshots of the system structure. In the third approach, the entities are modeled as rational decision-making agents who make linking decisions based on the maximization of their payoffs. Within the decision-centric framework, the multinomial logit choice model is adopted to estimate the preferences of decision-making nodes. The approaches are illustrated and compared using an example of the autonomous system (AS) level Internet. The approaches are generally applicable to a variety of complex systems that can be modeled as networks. The insights gained are expected to direct researchers in choosing the most applicable estimation approach to get the node-level behaviors in the context of different scenarios.

References

References
1.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
2nd ed.
,
Springer
,
London
.
2.
Buede
,
D. M.
,
2000
,
The Engineering Design of Systems: Models and Methods
,
John Wiley and Sons, Inc.
,
New York
.
3.
NASA
,
2007
,
NASA Systems Engineering Handbook (NASA/SP-2007-6105 Rev1)
,
National Aeronautics and Space Administration
,
Washington, DC
.
4.
Hawthorne
,
B. D.
, and
Panchal
,
J. H.
,
2012
, “
Policy Design for Sustainable Energy Systems Considering Multiple Objectives and Incomplete Preferences
,”
2012 ASME International Design Engineering and Technical Conferences (Design Automation Conference)
,
Chicago, IL
, Paper No. DETC2012-70426.
5.
Sha
,
Z.
, and
Panchal
,
J.
,
2013
, “
Towards the Design of Complex Evolving Networks with High Robustness and Resilience
,”
Procedia Computer Science, Proceedings of the 2013 Conference on Systems Engineering Research (CSER)
, Vol.
16
, pp.
522
531
.
6.
Barabasi
,
A. L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
.10.1126/science.286.5439.509
7.
Albert
,
R.
, and
Barabasi
,
A. L.
,
2002
, “
Statistical Mechanics of Complex Networks
,”
Rev. Mod. Phys.
,
74
(
1
), pp.
47
97
.10.1103/RevModPhys.74.47
8.
Dorogovtsev
,
S. N.
, and
Mendes
,
J. F. F.
,
2002
, “
Evolution of Networks
,”
Adv. Phys.
,
51
(
4
), pp.
1079
1187
.10.1080/00018730110112519
9.
Faloutsos
,
M.
,
Faloutsos
,
P.
, and
Faloutsos
,
C.
,
1999
, “
On Power-Law Relationships of the Internet Topology
,”
Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’99
, pp.
251
262
.
10.
Barabasi
,
A. L.
,
Albert
,
R.
, and
Jeong
,
H.
,
2000
, “
Scale-Free Characteristics of Random Networks: The Topology of the World-Wide Web
,”
Phys. A: Stat. Mech. Appl.
,
281
(
1–4
), pp.
69
77
.10.1016/S0378-4371(00)00018-2
11.
Jeong
,
H.
,
Tombor
,
B.
,
Albert
,
R.
,
Oltvai
,
Z. N.
, and
Barabási
,
A. L.
,
2000
, “
The Large-Scale Organization of Metabolic Networks
,”
Nature
,
407
(
6804
), pp.
651
653
.10.1038/35036627
12.
Tangmunarunkit
,
H.
,
Govindan
,
R.
,
Jamin
,
S.
,
Shenker
,
S.
, and
Willinger
,
W.
,
2002
, “
Network Topology Generators: Degree-Based vs. Structural
,”
Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’02
, pp.
147
159
.
13.
Hogg
,
R. V.
,
Craig
,
A.
, and
W.
,
M. J.
,
2004
,
Introduction to Mathematical Statistics
,
6th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
14.
Clauset
,
A.
,
Shalizi
,
C. R.
, and
Newman
,
M. E. J.
,
2009
, “
Power-Law Distributions in Empirical Data
,”
SIAM Rev.
,
51
(
4
), pp.
661
703
.10.1137/070710111
15.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes: The Art of Scientific Computation
,
3rd ed.
,
Cambridge University Press
,
New York
.
16.
Clauset
,
A.
,
Newman
,
M. E. J.
, and
Moore
,
C.
,
2007
. “
Finding Community Structure in Very Large Networks
,”
Phys. Rev. E
,
70
(
6
), p.
066111
.10.1103/PhysRevE.70.066111
17.
Ben-Akiva
,
M.
, and
Lerman
,
S. R.
,
1985
,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
MIT Press
,
Cambridge, MA
.
18.
Williams
,
H. C. W. L.
,
1977
, “
On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit
,”
Environ. Plann.
,
9
(
3
), pp.
285
344
.10.1068/a090285
19.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
,
Decision-Based Design: Integrating Consumer Preferences into Engineering Design
,
Springer
,
London
.
20.
Train
,
K.
,
2009
,
Discrete Choice Methods with Simulation
,
2nd ed.
,
Cambridge University Press
,
New York
.
21.
Viton
,
P. A.
,
2012
, “
Discrete-Choice Logit Models With R
,” http://facweb.knowlton.ohio-state.edu/pviton/courses2/crp5700/5700-mlogit.pdf
22.
Croissant
,
Y.
,
2012
, “
Estimation of Multinomial Logit Models in R: The Mlogit Packages
,” http://cran.r-project.org/web/packages/mlogit/vignettes/mlogit.pdf
23.
R Development Core Team
,
2008
, “
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing
.” Available at: http://www.r-project.org/
24.
Watts
,
D. J.
, and
Strogatz
,
S.
,
1998
, “
Collective Dynamics of “Small-World” Networks
,”
Nature
,
393
, pp.
440
442
.10.1038/30918
25.
Freeman
,
L.
,
1977
, “
A Set of Measures of Centrality Based on Betweenness
,”
Sociometry
,
40
(
1
), pp.
35
41
.10.2307/3033543
26.
Leguay
,
J.
,
2004
, “
An Analysis on the Internet Topology
,” PhD thesis, Linkoping University, Linkoping, Sweden.
27.
Hawkinson
,
J.
, and
Bates
,
T.
,
1996
, “
Guidelines for Creation, Selection, and Registration of an Autonomous System (AS), Network Working Group
.” Available at: http://tools.ietf.org/html/rfc1930
28.
Chen
,
Q.
,
Chang
,
H.
,
Govindan
,
R.
,
Jamin
,
S.
,
Shenker
,
S. J.
, and
Willinger
,
W.
,
2002
, “
The Origin of Power Laws in Internet Topologies Revisited
,”
Proceedings of Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2002
, Vol.
2
, pp.
608
617
.
29.
CAIDA
,
2013
, “
The Cooperative Association for Internet Data Analysis
.” Available at: http://www.caida.org/home/
30.
RouterView
,
2013
, “
The RouterView Project
.” Available at: http://www.routeviews.org/
31.
Newman
,
M. E.
,
2003
, “
The Structure and Function of Complex Networks
,”
SIAM Rev.
,
45
(
2
), pp.
167
256
.10.1137/S003614450342480
32.
Kullback
,
S.
, and
Leibler
,
R.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.10.1214/aoms/1177729694
You do not currently have access to this content.