Product and design analytics is emerging as a promising area for the analysis of large-scale data and usage of the extracted knowledge for the design of optimal system. The continuous preference trend mining (CPTM) algorithm and application proposed in this study address some fundamental challenges in the context of product and design analytics. The first contribution is the development of a new predictive trend mining technique that captures a hidden trend of customer purchase patterns from accumulated transactional data. Unlike traditional, static data mining algorithms, the CPTM does not assume stationarity but dynamically extracts valuable knowledge from customers over time. By generating trend embedded future data, the CPTM algorithm not only shows higher prediction accuracy in comparison with well-known static models but also provides essential properties that could not be achieved with previously proposed models: utilizing historical data selectively, avoiding an over-fitting problem, identifying performance information of a constructed model, and allowing a numeric prediction. The second contribution is the formulation of the initial design problem which can reveal an opportunity for multiple profit cycles. This mathematical formulation enables design engineers to optimize product design over multiple life cycles while reflecting customer preferences and technological obsolescence using the CPTM algorithm. For illustration, the developed framework is applied to an example of tablet PC design in leasing market and the result shows that the determination of optimal design is achieved over multiple life cycles.

References

References
1.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2008
, “
Optimal Product Portfolio Formulation by Merging Predictive Data Mining With Multilevel Optimization
,”
ASME J. Mech. Des.
,
130
(
4
), pp.
991
1000
.10.1115/1.2838336
2.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2011
, “
Trend Mining for Predictive Product Design
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111008
.10.1115/1.4004987
3.
Van Horn
,
D.
,
Olewnik
,
A.
, and
Lewis
,
K.
,
2012
, “
Design Analytics: Capturing, Understanding and Meeting Customer Needs Using Big Data
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2011)
, Paper No. DETC2012-71038.
4.
Tucker
,
C. S.
,
2011
, “
Data Trend Mining Design for Predictive Systems Design
,” Ph.D. thesis, University of Illinois, Chicago, IL.
5.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2011)
, Paper No. DETC2012-70493.
6.
Environmental Protection Agency
,
2011
, “
Electronics Waste Management in the United States Through 2009
,” U.S. EPA, May, Report EPA No. 530-R-11-002.
7.
Sodhi
,
M. S.
, and
Reimer
,
B.
,
2001
, “
Models for Recycling Electronics End-Of-Life Products
,”
OR Spektrum
,
23
(
1
), pp.
97
115
.10.1007/PL00013347
8.
Fishbein
,
B. K.
,
1998
, “
EPR: What Does it Mean? Where is it headed?
,”
P2: Pollution Prevention Rev.
,
8
(
4
), pp.
43
55
.10.1002/ppr.5
9.
Product Stewardship Institute
,
2012
, “
Extended Producer Responsibility State Laws
.” Available at: http://productstewardship.us (accessed in May 2013).
10.
Wagner
,
S.
,
2003
,
Understanding Green Consumer Behaviour: A Qualitative Cognitive Approach
,
Consumer Research and Policy Series, Taylor & Francis Group
.
11.
Environmental Protection Agency
,
2011
, “
Benefits of the Remanufacturing Exclusion: Background Document in Support of the Definition of Solid Waste Rule
,” June, Washington, DC.
12.
Hucal
,
M.
,
2008
, “
Product Recycling Creates Multiple Lives for Caterpillar Machines
,” Peoria Magazines, September.
13.
King
,
A.
,
Miemczyk
,
J.
, and
Bufton
,
D.
,
2006
, “
Photocopier Remanufacturing at Xerox uk a Description of the Process and Consideration of Future Policy Issues
,”
Innovation in Life Cycle Engineering and Sustainable Development
,
D.
Brissaud
,
S.
Tichkiewitch
, and
P.
Zwolinski
, eds.,
Springer
Netherlands
, pp.
173
186
.
14.
Parker
,
D.
, and
Butler
,
P.
,
2007
, “
An Introduction to Remanufacturing
.” Available at: http://www.remanufacturing.org.uk (accessed in May 2013).
15.
Kusiak
,
A.
, and
Smith
,
M.
,
2007
, “
Data Mining in Design of Products and Production Systems
,”
Annu. Rev. Control
,
31
(
1
), pp.
147
156
.10.1016/j.arcontrol.2007.03.003
16.
Böttcher
,
M.
,
Spott
,
M.
, and
Kruse
,
R.
,
2008
, “
Predicting Future Decision Trees From Evolving Data
,”
Proceedings of ICDM’08
, pp.
33
42
. 10.1002/widm.27
17.
Böttcher
,
M.
,
2011
, “
Contrast and Change Mining
,”
Wiley Interdiscip. Rev.: Data Mining Knowledge Discovery
,
1
(
3
), pp.
215
230
.
18.
Klinkenberg
,
R.
,
2004
. “
Learning Drifting Concepts: Example Selection vs. Example Weighting
,”
Intell. Data Anal.
,
8
(
3
), pp.
281
300
. Available at: http://www.iospress.nl/
19.
Ma
,
J.
,
Kwak
,
M.
, and
Kim
,
H. M.
,
2014
. “
Demand Trend Mining for Predictive Life Cycle Design
,”
J. Clean. Prod
. 10.1016/j.jclepro.2014.01.026
20.
Vapnik
,
V. N.
,
1998
,
Statistical Learning Theory
,
Wiley-Interscience
,
Hoboken, NJ
.
21.
Fixson
,
S. K.
,
2004
, “
Assessing Product Architecture Costing: Product life cycles, Allocation Rules, and Cost Models
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2004)
, Paper No. DETC2004-57458.
22.
Duverlie
,
P.
, and
Castelain
,
J. M.
,
1999
, “
Cost Estimation During Design Step: Parametric Method Versus Case Based Reasoning Method
,”
Int. J. Adv. Manuf. Technol.
,
15
(
12
), pp.
895
906
.10.1007/s001700050147
23.
Seo
,
K.
,
Park
,
J.
,
Jang
,
D.
, and
Wallace
,
D.
,
2002
, “
Approximate Estimation of the Product Life Cycle Cost Using Artificial Neural Networks in Conceptual Design
,”
Int. J. Adv. Manuf. Technol.
,
19
(
6
), pp.
461
471
.10.1007/s001700200049
24.
Zhao
,
Y.
,
Pandey
,
V.
,
Kim
,
H. M.
, and
Thurston
,
D.
,
2010
, “
Varying Lifecycle Lengths Within a Product Take-Back Portfolio
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091012
.10.1115/1.4002142
25.
Hyndman
,
R.
,
Koehler
,
A.
,
Ord
,
J. K.
, and
Snyder
,
R.
,
2008
,
Forecasting with Exponential Smoothing: The State Space Approach
,
Springer-Verlag
,
Berlin, Heidelberg
.
26.
Quinlan
,
J. R.
,
1993
,
C4.5: Programs for Machine Learning
, Morgan Kaufmann Series in Machine Learning,
Morgan Kaufmann Publishers
.
27.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.10.1023/A:1022643204877
28.
Witten
,
I.
, and
Frank
,
E.
,
2005
,
Data Mining: Practical Machine Learning Tools and Techniques
,
2nd ed.
, The Morgan Kaufmann Series in
Data Management Systems, Elsevier Science
.
29.
Cheung
,
K.-W.
,
Kwok
,
J. T.
,
Law
,
M. H.
, and
Tsui
,
K.-C.
,
2003
, “
Mining Customer Product Ratings for Personalized Marketing
,”
Decision Support Syst.
,
35
(
2
), pp.
231
243
.10.1016/S0167-9236(02)00108-2
30.
Archak
,
N.
,
Ghose
,
A.
, and
Ipeirotis
,
P. G.
,
2011
, “
Deriving the Pricing Power of Product Features by Mining Consumer Reviews
,”
Manage. Sci.
,
57
(
8
), pp.
1485
1509
.10.1287/mnsc.1110.1370
31.
Ferreira
,
L.
,
Jakob
,
N.
, and
Gurevych
,
I.
,
2008
, “
A Comparative Study of Feature Extraction Algorithms in Customer Reviews
,”
2008 IEEE International Conference on Semantic Computing
, pp.
144
151
.
32.
Abulaish
,
M.
,
Jahiruddin
,
Doja
,
M. N.
, and
Ahmad
,
T.
,
2009
, “
Feature and Opinion Mining for Customer Review Summarization
,”
Proceedings of the 3rd International Conference on Pattern Recognition and Machine Intelligence
, PReMI’09, Springer-Verlag, pp.
219
224
.
33.
Decker
,
R.
, and
Trusov
,
M.
,
2010
, “
Estimating Aggregate Consumer Preferences From Online Product Reviews
,”
Int. J. Res. Market.
,
27
(
4
), pp.
293
307
.10.1016/j.ijresmar.2010.09.001
34.
De'ath
,
G.
,
2002
, “
Multivariate Regression Trees: A New Technique for Modeling Species-Environment Relationships
,”
Ecology
,
83
(
4
), pp.
1105
1117
.10.2307/3071917
35.
Kwak
,
M.
, and
Kim
,
H. M.
,
2011
, “
Market-Driven Positioning of Remanufactured Product for Design for Remanufacturing With Part Upgrade
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2011)
, Paper No. DETC2011-48432.
36.
Yue
,
S.
,
Pilon
,
P.
, and
Cavadias
,
G.
,
2002
, “
Power of the Mannkendall and Spearman's Rho Tests for Detecting Monotonic Trends in Hydrological Series
,”
J. Hydrol.
,
259
(
14
), pp.
254
271
.10.1016/S0022-1694(01)00594-7
37.
Hyndman
,
R.
, and
Khandakar
,
Y.
,
2008
, “
Automatic Time Series Forecasting: The Forecast Package for R
,”
J. Stat. Softw.
,
27
(3), pp.
1
22
.
38.
Quinlan
,
J. R.
,
1992
,
Learning With Continuous Classes
,
World Scientific
,
Singapore
, pp.
343
348
.
39.
Wang
,
Y.
, and
Witten
, I
. H.
,
1997
, “
Inducing Model Trees for Continuous Classes
,”
Proceedings of the 9th European Conference on Machine Learning Poster Papers
, pp.
128
137
.
40.
Hall
,
M.
,
Frank
,
E.
,
Holmes
,
G.
,
Pfahringer
,
B.
,
Reutemann
,
P.
, and
Witten
, I
. H.
,
2009
, “
The Weka Data Mining Software: An Update
,”
SIGKDD Explor. Newsl.
,
11
(
1
), pp.
10
18
.10.1145/1656274.1656278
41.
R Development Core Team
,
2008
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
42.
Kwak
,
M.
,
Kim
,
H. M.
, and
Thurston
,
D.
,
2012
, “
Formulating Second-Hand Market Value as a Function of Product Specifications, Age, and Conditions
,”
ASME J. Mech. Des.
,
134
(
3
), p.
032001
.10.1115/1.4005858
43.
Shrestha
,
D. L.
, and
Solomatine
,
D. P.
,
2006
, “
Machine Learning Approaches for Estimation of Prediction Interval for the Model Output
,”
Neural Netw.
,
19
(
2
), pp.
225
235
.10.1016/j.neunet.2006.01.012
You do not currently have access to this content.