The rigid-body replacement method is often used when designing a compliant mechanism. The stiffness of the compliant mechanism, one of its main properties, is then highly dependent on the initial choice of a rigid-body architecture. In this paper, we propose to enhance the efficiency of the synthesis method by focusing on the architecture selection. This selection is done by considering the required mobilities and parallel manipulators in singularity to achieve them. Kinematic singularities of parallel structures are indeed advantageously used to propose compliant mechanisms with interesting stiffness properties. The approach is first illustrated by an example, the design of a one degree of freedom compliant architecture. Then, the method is used to design a medical device where a compliant mechanism with three degrees of freedom is needed. The interest of the approach is outlined after application of the method.

References

References
1.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.10.1115/1.2056561
2.
Choi
,
D.
, and
Riviere
,
C.
,
2005
, “
Flexure-Based Manipulator for Active Handhled Microsurgical Instrument
,”
27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, pp.
2325
2328
.
3.
Savall
,
J.
,
Manrique
,
M.
,
Echeverria
,
M.
, and
Ares
,
M.
,
2006
, “
Micromanipulator for Enhancing Surgeon's Dexterity in Cochlear Atraumatic Surgery
,”
IEEE/EMBS Annual International Conference
.
4.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Design and Dynamics of a 3-DOF Flexure-Based Parallel Mechanism for Micro/Nano Manipulation
,”
Microelectron. Eng.
,
87
(
2
), pp.
230
241
.10.1016/j.mee.2009.08.001
5.
Richard
,
M.
, and
Clavel
,
R.
,
2011
, “
Concept of Modular Flexure-Based Mechanisms for Ultra-High Precision Robot Design
,”
Mech. Sci.
,
2
(
2
), pp.
99
107
.10.5194/ms-2-99-2011
6.
Fowler
,
R. M.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
205
215
.10.5194/ms-2-205-2011
7.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA, August 30–September 2,
ASME
Paper No. DETC2009-86845, pp.
193
214
.10.1115/DETC2009-86845
8.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precis. Eng.
,
35
(
4
), pp.
638
649
.10.1016/j.precisioneng.2011.04.006
9.
DiBiasio
,
C. M.
, and
Culpepper
,
M. L.
,
2012
, “
A Building Block Synthesis Approach for Precision Flexure Systems With Integrated, Strain-Based Position Sensing
,”
Precis. Eng.
,
36
(
4
), pp.
673
679
.10.1016/j.precisioneng.2012.05.001
10.
Olsen
,
B. M.
,
Issac
,
Y.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Utilizing a Classification Scheme to Facilitate Rigid-Body Replacement for Compliant Mechanism Design
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
475
489
.
11.
Howell
,
L.
,
2001
,
Compliant Mechanisms
, John Wiley & Sons, New York.
12.
Bachta
,
W.
,
Renaud
,
P.
,
Laroche
,
E.
, and
Gangloff
,
J.
,
2011
, “
The Cardiolock Project: Design of an Active Cardiac Stabilizer for Cardiac Surgery
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071002
.10.1115/1.4004117
13.
Ouyang
,
P.
,
2011
, “
A Spatial Hybrid Motion Compliant Mechanism: Design and Optimization
,”
Mechatronics
,
21
(
3
), pp.
479
489
.10.1016/j.mechatronics.2010.12.009
14.
Xu
,
Q.
, and
Li
,
Y.
,
2011
, “
Analytical Modeling, Optimization and Testing of a Compound Bridge-Type Compliant Displacement Amplifier
,”
Mech. Mach. Theory
,
46
(
2
), pp.
183
200
.10.1016/j.mechmachtheory.2010.09.007
15.
Olsen
,
B. M.
,
2010
, “
A Design Framework That Employs a Classification Scheme and Library for Compliant Mechanism Design
,” Master's thesis, Brigham Young University, Provo, UT.
16.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Springer
,
New York
.
17.
Mattson
,
C. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2004
, “
Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid-Body Model: Case Studies of Parallel Mechanisms
,”
J. Intell. Mater. Syst. Struct.
,
15
(
3
), pp.
195
202
.10.1177/1045389X04033256
18.
Amine
,
S.
, Tale-Masouleh
,
M.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Analysis of 3t2r Parallel Mechanisms Using Grassmann–Cayley Algebra and Grassmann Line Geometry
,”
Mech. Mach. Theory
,
52
, pp.
326
340
.10.1016/j.mechmachtheory.2011.11.015
19.
Choueifati
,
J.
,
Lusk
,
C.
,
Pang
,
X.
, and
Volinsky
,
A. A.
,
2007
, “
Compliant MEMS Motion Characterization by Nanoindentation
,”
MRS Proceedings
, Vol.
1052
.
20.
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2008
, “
Components, Building Blocks, and Demonstrations of Spherical Mechanisms in Microelectromechanical Systems
,”
ASME J. Mech. Des.
,
130
(
3
), p.
034503
.10.1115/1.2829914
21.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.10.1115/1.2826720
22.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
, pp.
281
290
.10.1109/70.56660
23.
Zlatanov
,
D. S.
, Fenton, R. G., and Benhabib, B.,
1998
, “
Classification and Interpretation of the Singularities of Redundant Mechanisms
,”
Proceedings of ASME Design Engineering Technical Conference
, Atlanta, GA, Sept. 13–16, ASME Paper No. DETC98/MECH-5896.
24.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2001
, “
Ortho-Planar Linear-Motion Springs
,”
Mech. Mach. Theory
,
36
(
11–12
), pp.
1281
1299
.10.1016/S0094-114X(01)00051-9
25.
Chapuis
,
D.
,
Gassert
,
R.
,
Sache
,
L.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2004
, “
Design of a Simple MRI/FMRI Compatible Force/Torque Sensor
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
3
, pp.
2593
2599
.
26.
Renaud
,
P.
, and
de Mathelin
,
M.
,
2009
, “
Kinematic Analysis for a Novel Design of MRI-Compatible Torque Sensor
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
2640
2646
.
27.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.10.1115/1.1582878
28.
Lobontiu
,
N.
,
2003
.
Compliant Mechanisms—Design of Flexure Hinges
,
CRC Press
,
Boca Raton
, FL.
29.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2004
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.10.1115/1.1900149
30.
Bachta
,
W.
,
Renaud
,
P.
,
Laroche
,
E.
,
Forgione
,
A.
, and
Gangloff
,
J.
,
2008
, “
Cardiolock: An Active Cardiac Stabilizer, First in vivo Experiments Using a New Robotized Device
,”
Comput. Aided Surg.
,
13
(
5
), pp.
243
254
.10.3109/10929080802413129
31.
Bachta
,
W.
,
Renaud
,
P.
,
Laroche
,
E.
,
Forgione
,
A.
, and
Gangloff
,
J.
,
2011
, “
Active Stabilization for Robotized Beating Heart Surgery
,”
IEEE Trans. Rob.
,
27
(
4
), pp.
757
768
.10.1109/TRO.2011.2137770
32.
Choi
,
K.-B.
, and
Lee
,
H.-W.
,
2008
, “
Analysis and Design of Linear Parallel Compliant Stage for Ultra-Precision Motion Based on 4-pp Flexural Joint Mechanism
,”
International Conference on Smart Manufacturing Application
, pp.
35
38
.
33.
Wang
,
H.
, and
Zhang
,
X.
,
2008
, “
Input Coupling Analysis and Optimal Design of a 3-DOF Compliant Micro-Positioning Stage
,”
Mech. Mach. Theory
,
43
(
4
), pp.
400
410
.10.1016/j.mechmachtheory.2007.04.009
34.
Yong
,
Y. K.
, and
Lu
,
T.-F.
,
2009
, “
Kinetostatic Modeling of 3-RRR Compliant Micro-Motion Stages With Flexure Hinges
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1156
1175
.10.1016/j.mechmachtheory.2008.09.005
35.
Rubbert
,
L.
,
Renaud
,
P.
, and
Gangloff
,
J.
,
2012
, “
Design and Optimization for a Cardiac Active Stabilizer Based on Planar Parallel Compliant Mechanism
,”
Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
, Nantes, France, July 2–4,
ASME
Paper No. ESDA2012-82278.10.1115/ESDA2012-82278
36.
Andersen
,
C.
,
Magleby
,
S.
, and
Howell
,
L.
,
2009
, “
Principles and Preliminary Concepts for Compliant Mechanically Reactive Armor
,”
Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, London, UK, June 22–24, pp.
370
376
.
37.
Qin
,
Y.
, and
Dai
,
J. S.
,
2012
, “
Forward Displacement Analysis of Two Foldable 3US Parallel Mechanisms
,”
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
London
, pp.
805
814
.
38.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
New York
.
39.
Rubbert
,
L.
,
Caro
,
S.
,
Renaud
,
P.
, and
Gangloff
,
J.
,
2012
, “
A Planar RRP Compliant Mechanism Based on the Singularity Analysis of a 3-US Parallel Mechanism
,”
Advances in Robot Kinematics
,
Springer, Innsbruck
,
Austria
.
40.
Xu
,
Q.
, and
Li
,
Y.
,
2006
, “
Mechanical Design of Compliant Parallel Micromanipulators for Nano Scale Manipulation
,”
1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, pp.
653
657
.
41.
Tanik
,
E.
, and
Parlaktas
,
V.
,
2012
, “
Compliant Cardan Universal Joint
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021011
.10.1115/1.4005657
You do not currently have access to this content.