This paper presents an efficient uncertainty analysis for estimating the possibility distribution of structural reliability in presence of mixed uncertain variables. The proposed method involves high dimensional model representation for the limit state function approximation, transformation technique to obtain the contribution of the fuzzy variables to the convolution integral and fast Fourier transform for solving the convolution integral. In this methodology, efforts are required in evaluating conditional responses at a selected input determined by sample points, as compared to full scale simulation methods, thus the computational efficiency is accomplished. The proposed method is applicable for structural reliability estimation involving any number of fuzzy and random variables with any kind of distribution.

References

References
1.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
Chichester
, UK.
2.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp.
365
395
.10.1016/S0167-4730(02)00009-7
4.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
ASCE J. Eng. Mech.
,
110
(
3
), pp.
357
366
.10.1061/(ASCE)0733-9399(1984)110:3(357)
5.
Der Kiureghian
,
A.
, and
De Stefano
,
M.
,
1991
, “
Efficient Algorithm for Second-Order Reliability Analysis
,”
ASCE J. Eng. Mech.
,
117
(
12
), pp.
2904
2923
.10.1061/(ASCE)0733-9399(1991)117:12(2904)
6.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.10.1115/1.4007150
7.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
,
2005
, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
851
857
.10.1115/1.1899691
8.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.10.1115/1.4002459
9.
Liu
,
P. L.
, and
Der Kiureghian
,
A.
,
1991
, “
Finite Element Reliability of Geometrically Nonlinear Uncertain Structures
,”
ASCE J. Eng. Mech.
,
117
(
8
), pp.
1806
1825
.10.1061/(ASCE)0733-9399(1991)117:8(1806)
10.
Impollonia
,
N.
, and
Sofi
,
A.
,
2003
, “
A Response Surface Approach for the Static Analysis of Stochastic Structures With Geometrical Nonlinearities
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
37–38
), pp.
4109
4129
.10.1016/S0045-7825(03)00379-7
11.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.10.1016/S0266-8920(01)00019-4
12.
Melchers
,
R. E.
,
1989
, “
Importance Sampling in Structural Systems
,”
Struct. Saf.
,
6
(
1
), pp.
3
10
.10.1016/0167-4730(89)90003-9
13.
Rubinstein
,
R. Y.
,
1981
,
Simulation and the Monte Carlo Method
,
Wiley
,
New York
.
14.
Faravelli
,
L.
,
1989
, “
Response-Surface Approach for Reliability Analysis
,”
ASCE J. Eng. Mech.
,
115
(
12
), pp.
2763
2781
.10.1061/(ASCE)0733-9399(1989)115:12(2763)
15.
Gavin
,
H. P.
, and
Yau
,
S. C.
,
2008
, “
High-Order Limit State Functions in the Response Surface Method for Structural Reliability Analysis
,”
Struct. Saf.
,
30
(
2
), pp.
162
179
.10.1016/j.strusafe.2006.10.003
16.
Wu
,
Y. T.
, and
Torng
,
T. Y.
,
1990
, “
A Fast Convolution Procedure for Probabilistic Engineering Analysis
,”
Proceedings of First International Symposium Uncertainty Modeling and Analysis
,
College Park, MD
, pp.
670
675
.
17.
Sakamoto
,
J.
,
Mori
,
Y.
, and
Sekioka
,
T.
,
1997
, “
Probability Analysis Method Using Fast Fourier Transform and Its Application
,”
Struct. Saf.
,
19
(
1
), pp.
21
36
.10.1016/S0167-4730(96)00032-X
18.
Penmetsa
,
R. V.
, and
Grandhi
,
R.
,
2003
, “
Adaptation of Fast Fourier Transformations to Estimate Structural Failure Probability
,”
Finite Elem. Anal. Des.
,
39
(
5–6
), pp.
473
485
.10.1016/S0168-874X(02)00104-X
19.
Grandhi
,
R.
, and
Wang
,
L.
,
1998
, “
Reliability-Based Structural Optimization Using Improved Two-Point Adaptive Nonlinear Approximations
,”
Finite Elem. Anal. Des.
,
29
(
1
), pp.
35
48
.10.1016/S0168-874X(98)00007-9
20.
Rao
,
B. N.
, and
Chowdhury
,
R.
,
2008
, “
Probabilistic Analysis Using High Dimensional Model Representation and Fast Fourier Transform
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
(
6
), pp.
342
357
.10.1080/15502280802363035
21.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.10.1115/1.2118667
22.
Dong
,
W. M.
, and
Wong
,
F. S.
,
1987
, “
Fuzzy Weighted Averages and Implementation of the Extension Principle
,”
Fuzzy Sets Syst.
,
21
(
2
), pp.
183
199
.10.1016/0165-0114(87)90163-1
23.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
,
2001
, “
Uncertainty in Mechanics Problems-Interval-Based Approach
,”
ASCE J. Eng. Mech.
,
127
(
6
), pp.
557
566
.10.1061/(ASCE)0733-9399(2001)127:6(557)
24.
Penmetsa
,
R. V.
, and
Grandhi
,
R.
,
2003
, “
Uncertainty Propagation Using Possibility Theory and Function Approximations
,”
Mech. Based Des. Struct. Mach.
,
31
(
2
), pp.
257
279
.10.1081/SME-120020293
25.
Qiu
,
Z.
,
Wang
,
X.
, and
Chen
,
J.
,
2006
, “
Exact Bounds for the Static Response Set of Structures With Uncertain-But-Bounded Parameters
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6574
6593
.10.1016/j.ijsolstr.2006.01.012
26.
Balu
,
A. S.
, and
Rao
,
B. N.
,
2012
, “
High Dimensional Model Representation Based Formulations for Fuzzy Finite Element Analysis of Structures
,”
Finite Elem. Anal. Des.
,
50
, pp.
217
230
.10.1016/j.finel.2011.09.012
27.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2006
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
901
908
.10.1115/1.2204970
28.
Zhou
,
J.
, and
Mourelatos
,
Z. P.
,
2008
, “
A Sequential Algorithm for Possibility-Based Design Optimization
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011001
.10.1115/1.2803250
29.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
,
2004
, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
386
394
.10.1115/1.1701878
30.
Zaman
,
K.
,
McDonald
,
M.
, and
Mahadevan
,
S.
,
2011
, “
Probabilistic Framework for Uncertainty Propagation With Both Probabilistic and Interval Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021010
.10.1115/1.4002720
31.
Jiang
,
C.
,
Han
,
X.
,
Li
,
W. X.
,
Liu
,
J.
, and
Zhang
,
Z.
,
2012
, “
A Hybrid Reliability Approach Based on Probability and Interval for Uncertain Structures
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031001
.10.1115/1.4005595
32.
Langley
,
R. S.
,
2000
, “
Unified Approach to Probabilistic and Possibilistic Analysis of Uncertain Systems
,”
ASCE J. Eng. Mech.
,
126
(
11
), pp.
1163
1172
.10.1061/(ASCE)0733-9399(2000)126:11(1163)
33.
Möller
,
B.
,
Graf
,
W.
, and
Beer
,
M.
,
2003
, “
Safety Assessment of Structures in View of Fuzzy Randomness
,”
Comput. Struct.
,
81
(
15
), pp.
1567
1582
.10.1016/S0045-7949(03)00147-0
34.
Qiu
,
Z.
,
Yang
,
D.
, and
Elishakoff
,
I.
,
2008
, “
Probabilistic Interval Reliability of Structural Systems
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2850
2860
.10.1016/j.ijsolstr.2008.01.005
35.
Penmetsa
,
R. V.
, and
Grandhi
,
R.
,
2002
, “
Efficient Estimation of Structural Reliability for Problems With Uncertain Intervals
,”
Comput. Struct.
,
80
(
12
), pp.
1103
1112
.10.1016/S0045-7949(02)00069-X
36.
Adduri
,
P. R.
, and
Penmetsa
,
R. C.
,
2007
, “
Bounds on Structural System Reliability in the Presence of Interval Variables
,”
Comput. Struct.
,
85
(
5–6
), pp.
320
329
.10.1016/j.compstruc.2006.10.012
37.
Adduri
,
P. R.
, and
Penmetsa
,
R. C.
,
2008
, “
Confidence Bounds on Component Reliability in the Presence of Mixed Uncertain Variables
,”
Int. J. Mech. Sci.
,
50
(
3
), pp.
481
489
.10.1016/j.ijmecsci.2007.09.015
38.
Elishakoff
,
I.
, and
Ferracuti
,
B.
,
2006
, “
Four Alternative Definitions of the Fuzzy Safety Factor
,”
ASCE J. Aerosp. Eng.
,
19
(
4
), pp.
281
287
.10.1061/(ASCE)0893-1321(2006)19:4(281)
39.
Elishakoff
,
I.
, and
Ferracuti
,
B.
,
2006
, “
Fuzzy Sets Based Interpretation of the Safety Factor
,”
Fuzzy Sets and Systems
,
157
, pp.
2495
2512
.10.1016/j.fss.2006.06.009
40.
Balu
,
A. S.
, and
Rao
,
B. N.
,
2012
, “
Multicut-High Dimensional Model Representation for Structural Reliability Bounds Estimation Under Mixed Uncertainties
,”
Comput. Aided Civil Infrastruct. Eng.
,
27
, pp.
419
438
.10.1111/j.1467-8667.2012.00763.x
41.
Alis
,
O. F.
, and
Rabitz
,
H.
,
2001
, “
Efficient Implementation of High Dimensional Model Representations
,”
J. Math. Chem.
,
29
(
2
), pp.
127
142
.10.1023/A:1010979129659
42.
Li
,
G.
,
Wang
,
S. W.
,
Rabitz
,
H.
,
Wang
,
S.
, and
Jaffé
,
P.
,
2002
, “
Global Uncertainty Assessments by High Dimensional Model Representations (HDMR)
,”
Chem. Eng. Sci.
,
57
(
21
), pp.
4445
4460
.10.1016/S0009-2509(02)00417-7
43.
Rabitz
,
H.
,
Alis
,
O. F.
,
Shorter
,
J.
, and
Shim
,
K.
,
1999
, “
Efficient Input-Output Model Representations
,”
Comput. Phys. Commun.
,
117
(
1–2
), pp.
11
20
.10.1016/S0010-4655(98)00152-0
44.
Sobol
,
I. M.
,
2003
, “
Theorems and Examples on High Dimensional Model Representations
,”
Reliab. Eng. Syst. Saf.
,
79
(
2
), pp.
187
193
.10.1016/S0951-8320(02)00229-6
45.
Wang
,
S. W.
,
Levy
II,
H.
,
Li
,
G.
, and
Rabitz
,
H.
,
1999
, “
Fully Equivalent Operational Models for Atmospheric Chemical Kinetics Within Global Chemistry-Transport Models
,”
J. Geophy. Res.
,
104
(
D23
), pp.
30417
30426
.10.1029/1999JD900830
46.
Chowdhury
,
R.
,
Rao
,
B. N.
, and
Prasad
,
A. M.
,
2009
,
"High Dimensional Model Representation for Structural Reliability Analysis
,
" Commun. Numer. Meth. Eng.
,
25
, pp.
301
337
.10.1002/cnm.1118
47.
Lin
,
Y. K.
,
1967
,
Probabilistic Theory of Structural Dynamics
,
Krieger
,
Florida
.
48.
Arora
,
J. S.
,
2004
,
Introduction to Optimum Design
,
Elsevier Academic Press
,
San Diego
.
49.
Lim
,
O. K.
, and
Arora
,
J. S.
,
1986
, “
An Active Set RQP Algorithm for Engineering Design Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
57
(
1
), pp.
51
65
.10.1016/0045-7825(86)90070-8
You do not currently have access to this content.