Abstract

In designing a microstructural materials system, there are several key questions associated with design representation, design evaluation, and design synthesis: how to quantitatively represent the design space of a heterogeneous microstructure system using a small set of design variables, how to efficiently reconstruct statistically equivalent microstructures for design evaluation, and how to quickly search for the optimal microstructure design to achieve the desired material properties. This paper proposes a new descriptor-based methodology for designing microstructural materials systems. It is proposed to use a small set of microstructure descriptors to represent material morphology features quantitatively. The descriptor set should be able to cover microstructure features at different levels, including composition, dispersion status, and phase geometry. A descriptor-based multiphase microstructure reconstruction algorithm is developed accordingly that allows efficient stochastic reconstructions of microstructures in both 2D and 3D spaces for finite element analysis (FEA) of material behavior. Finally, the descriptor-based representation allows the use of parametric optimization approach to search the optimal microstructure design that meets the target material properties. To improve the search efficiency, this paper integrates state-of-the-art computational design methods such as design of experiment (DOE), metamodeling, statistical sensitivity analysis, and multi-objective optimization, into one design optimization framework to automate the microstructure design process. The proposed methodology is demonstrated using the design of a polymer nanocomposites system. The choice of descriptors for polymer nanocomposites is verified by establishing a mapping between the finite set of descriptors and the infinite dimensional correlation function.

References

1.
McDowell
,
D. L.
, and
Olson
,
G. B.
,
2008
, “
Concurrent Design of Hierarchical Materials and Structures
,”
Scientific Modeling and Simulation SMNS
, pp.
1
34
.
2.
Panchal
,
J. H.
,
Kalidindi
,
S. R.
, and
McDowell
,
D. L.
,
2013
, “
Key Computational Modeling Issues in Integrated Computational Materials Engineering
,”
Comput. Aided Des.
,
45
(1), pp.
4
25
.10.1016/j.cad.2012.06.006
3.
Broderick
,
S.
,
Suh
,
C.
,
Nowers
,
J.
,
Vogel
,
B.
,
Mallapragada
,
S.
,
Narasimhan
,
B.
, and
Rajan
,
K.
,
2008
, “
Informatics for Combinatorial Materials Science
,”
JOM
,
60
, pp.
56
59
.10.1007/s11837-008-0035-x
4.
Ashby
,
M.
,
2005
,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Burlington, MA
.
5.
Karasek
,
L.
, and
Sumita
,
M.
,
1996
, “
Characterization of Dispersion State of Filler and Polymer-Filler Interactions in Rubber Carbon Black Composites
,”
J. Mater. Sci.
,
31
, pp.
281
289
.10.1007/BF01139141
6.
Pollock
,
T. M.
,
Allison
,
J. E.
,
Backman
,
D. G.
,
Boyce
,
M. C.
,
Gersh
,
M.
,
Holm
,
E. A.
,
LeSar
,
R.
,
Long
,
M.
,
Powell
,
A. C.
IV
,
Schirra
,
J. J.
,
Whitis
,
D. D.
, and
Woodward
,
C.
,
2008
, “
Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security
,” National Materials Advisory Board ISBN-10: 0-309-11999-5.
7.
Sundararaghavan
,
V.
, and
Zabaras
,
N.
,
2009
, “
A Statistical Learning Approach for the Design of Polycrystalline Materials
,”
Stat. Anal. Data Min.
,
1
, pp.
306
321
.10.1002/sam.10017
8.
Lewis
,
A. C.
,
Suh
,
C.
,
Stukowski
,
M.
,
Geltmacher
,
A. B.
,
Rajan
,
K.
, and
Spanos
,
G.
,
2008
, “
Tracking Correlations Between Mechanical Response and Microstructure in Three-Dimensional Reconstructions of a Commercial Stainless Steel
,”
Scr. Mater.
,
58
, pp.
575
578
.10.1016/j.scriptamat.2007.11.030
9.
Fullwood
,
D. T.
,
Niezgoda
,
S. R.
,
Adams
,
B. L.
, and
Kalidindi
,
S. R.
,
2010
, “
Microstructure Sensitive Design for Performance Optimization
,”
Prog. Mater. Sci.
,
55
, pp.
477
562
.10.1016/j.pmatsci.2009.08.002
10.
Saheli
,
G.
,
Garmestani
,
H.
, and
Adams
,
B. L.
,
2004
, “
Microstructure Design of a Two Phase Composite Using Two-Point Correlation Functions
,”
J. Comput.-Aided Mater. Des.
,
11
, pp.
103
115
.10.1007/s10820-005-3164-3
11.
Liu
,
Y.
,
Steven Greene
,
M.
,
Chen
,
W.
,
Dikin
,
D. A.
, and
Liu
,
W. K.
,
2013
, “
Computational Microstructure Characterization and Reconstruction to Enable Stochastic Multiscale Design
,”
Comput. Aided Des.
,
45
(1), pp.
65
76
.10.1016/j.cad.2012.03.007
12.
Rollett
,
A. D.
,
Lee
,
S. B.
,
Campman
,
R.
, and
Rohrer
,
G. S.
,
2007
, “
Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction
,”
Ann. Rev. Mater. Res.
,
37
, pp.
627
658
.10.1146/annurev.matsci.37.052506.084401
13.
Borbely
,
A.
,
Csikor
,
F. F.
,
Zabler
,
S.
,
Cloetens
,
P.
, and
Biermann
,
H.
,
2004
, “
Three-Dimensional Characterization of the Microstructure of a Metal-Matrix Composite by Holotomography
,”
Mater. Sci. Eng., A
,
367
, pp.
40
50
.10.1016/j.msea.2003.09.068
14.
Tewari
,
A.
, and
Gokhale
,
A. M.
,
2004
, “
Nearest-Neighbor Distances Between Particles of Finite Size in Three-Dimensional Uniform Random Microstructures
,”
Mater. Sci. Eng., A
,
385
, pp.
332
341
.10.1016/j.msea.2004.06.049
15.
Pytz
,
R.
,
2004
, “
Microstructure Description of Composites, Statistical Methods, Mechanics of Microstructure Materials
,”
CISM Courses and Lectures.
16.
Steinzig
,
M.
, and
Harlow
,
F.
,
1999
, “
Probability Distribution Function Evolution for Binary Alloy Solidification
,”
Solidification
, Proceedings of the Minerals, Metals, Materials Society Annual Meeting, San Diego, CA, pp.
197
206
.
17.
Scalon
,
J. D.
,
Fieller
,
N. R. J.
,
Stillman
,
E. C.
, and
Atkinson
,
H. V.
,
2003
, “
Spatial Pattern Analysis of Second-Phase Particles in Composite Materials
,”
Mater. Sci. Eng., A
,
356
, pp.
245
2573
.10.1016/S0921-5093(03)00138-2
18.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer-Verlag
,
New York
.
19.
Sundararaghavan
,
V.
, and
Zabaras
,
N.
,
2005
, “
Classification and Reconstruction of Three-Dimensional Microstructures Using Support Vector Machines
,”
Comput. Mater. Sci.
,
32
, pp.
223
239
.10.1016/j.commatsci.2004.07.004
20.
Basanta
,
D.
,
Miodownik
,
M. A.
,
Holm
,
E. A.
, and
Bentley
,
P. J.
,
2005
, “
Using Genetic Algorithms to Evolve Three-Dimensional Microstructures From Two-Dimensional Micrographs
,”
Metall. Mater. Trans. A
,
36A
, pp.
1643
1652
.10.1007/s11661-005-0026-2
21.
Holotescu
,
S.
, and
Stoian
,
F. D.
,
2011
, “
Prediction of Particle Size Distribution Effects on Thermal Conductivity of Particulate Composites
,”
Materialwiss. Werkstofftech.
,
42
, pp.
379
385
.10.1002/mawe.201100792
22.
Klaysom
,
C.
,
Moon
,
S. H.
,
Ladewig
,
B. P.
,
Lu
,
G. Q. M.
, and
Wang
,
L. Z.
,
2011
, “
The Effects of Aspect Ratio of Inorganic Fillers on the Structure and Property of Composite Ion-Exchange Membranes
,”
J. Colloid Interface Sci.
,
363
, pp.
431
439
.10.1016/j.jcis.2011.07.071
23.
Gruber
,
J.
,
Rollett
,
A. D.
, and
Rohrer
,
G. S.
,
2010
, “
Misorientation Texture Development During Grain Growth. Part II: Theory
,”
Acta Mater.
,
58
, pp.
14
19
.10.1016/j.actamat.2009.08.032
24.
Vaithyanathan
,
V.
,
Wolverton
,
C.
, and
Chen
,
L. Q.
,
2002
, “
Multiscale Modeling of Precipitate Microstructure Evolution
,”
Phys. Rev. Lett.
,
88
(
12
), p.
125503
.10.1103/PhysRevLett.88.125503
25.
Breneman
,
C. M.
,
Brinson
,
L. C.
,
Schadler
,
L. S.
,
Natarajan
,
B.
,
Krein
,
M.
,
Wu
,
K.
,
Morkowchuk
,
L.
,
Li
,
Y.
,
Deng
,
H.
, and
Xu
,
H.
,
2013
Stalking the Materials Genome: A Data-Driven Approach to the Virtual Design of Nanostructured Polymers.
,”
Adv. Funct. Mater.
23
(
46
), pp.
5746
5752
.10.1002/adfm.201301744
26.
Quiblier
,
J. A.
,
1984
, “
A New Three-Dimensional Modeling Technique for Studying Porous-Media
,”
J. Colloid Interface Sci.
,
98
, pp.
84
102
.10.1016/0021-9797(84)90481-8
27.
Jiang
,
Z.
,
Chen
,
W.
, and
Burkhart
,
C.
,
2013
, “
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization
,”
J. Microsc.
,
252
(
2
), pp.
135
148
.10.1111/jmi.12077
28.
Grigoriu
,
M.
,
2003
, “
Random Field Models for Two-Phase Microstructures
,”
J. Appl. Phys.
,
94
, pp.
3762
3770
.10.1063/1.1600827
29.
Takeuchi
,
I.
,
Lippmaa
,
M.
, and
Matsumoto
,
Y.
,
2006
, “
Combinatorial Experimentation and Materials Informatics
,”
MRS Bull.
,
31
, pp.
999
1003
.10.1557/mrs2006.228
30.
Fischer
,
C. C.
,
Tibbetts
,
K. J.
,
Morgan
,
D.
, and
Ceder
,
G.
,
2006
, “
Predicting Crystal Structure by Merging Data Mining With Quantum Mechanics
,”
Nat. Mater.
,
5
, pp.
641
646
.10.1038/nmat1691
31.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
, pp.
1037
1067
.10.1016/S0022-5096(96)00114-7
32.
Tian
,
R.
,
Chan
,
S.
,
Tang
,
S.
,
Kopacz
,
A. M.
,
Wang
,
J. S.
,
Jou
,
H. J.
,
Siad
,
L.
,
Lindgren
,
L. E.
,
Olson
,
G. B.
, and
Liu
,
W. K.
,
2010
, “
A Multiresolution Continuum Simulation of the Ductile Fracture Process
,”
J. Mech. Phys. Solids
,
58
, pp.
1681
1700
.10.1016/j.jmps.2010.07.002
33.
Xu
,
H.
,
Dmitriy
,
D. A.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.10.1016/j.commatsci.2013.12.046
34.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
, pp.
3647
3679
.10.1016/S0020-7683(03)00143-4
35.
Debye
,
P.
, and
Bueche
,
A. M.
,
1949
, “
Scattering by an Inhomogeneous Solid
,”
J. Appl. Phys.
,
20
, pp.
518
525
.10.1063/1.1698419
36.
Corson
,
P. B.
,
1974
, “
Correlation-Functions for Predicting Properties of Heterogeneous Materials.1. Experimental Measurement of Spatial Correlation-Functions in Multiphase Solids
,”
J. Appl. Phys.
,
45
, pp.
3159
3164
.10.1063/1.1663741
37.
Garmestani
,
H.
,
Lin
,
S.
,
Adams
,
B. L.
, and
Ahzi
,
S.
,
2001
, “
Statistical Continuum Theory for Large Plastic Deformation of Polycrystalline Materials
,”
J. Mech. Phys. Solids
,
49
, pp.
589
607
.10.1016/S0022-5096(00)00040-5
38.
Torquato
,
S.
,
2006
, “
Necessary Conditions on Realizable Two-Point Correlation Functions of Random Media
,”
Ind. Eng. Chem. Res.
,
45
, pp.
6923
6928
.10.1021/ie058082t
39.
Yeong
,
C. L. Y.
, and
Torquato
,
S.
,
1998
, “
Reconstructing Random Media
,”
Phys. Rev. E
,
57
, pp.
495
506
.10.1103/PhysRevE.57.495
40.
Sundararaghavan
,
V.
, and
Kumar
,
A.
,
2012
, “
Probabilistic Modeling of Microstructure Evolution Using Finite Element Representation of Statistical Correlation Functions
,”
Int. J. Plast.
,
30–31
, pp.
62
80
.10.1016/j.ijplas.2011.09.001
41.
Montgomery
,
D. C.
,
2004
,
Design and Analysis of Experiments
, 6th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
42.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
, pp.
1
13
.10.1007/s00158-001-0160-4
43.
Greene
,
M. S.
,
Xu
,
H.
,
Tang
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2012
, “
A Generalized Uncertainty Propagation Criterioark Studies of Microstructured Material Systems
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
271
291
.10.1016/j.cma.2012.10.023
44.
Xu
,
H.
,
Greene
,
M. S.
,
Deng
,
H.
,
Dikin
,
D. A.
,
Brinson
,
L. C.
,
Liu
,
W. K.
,
Burkhart
,
C.
,
Papakonstantopoulos
,
G.
,
Poldneff
,
M.
, and
Chen
,
W.
,
2013
, “
A Stochastic Reassembly Strategy for Managing Information Complexity in Heterogeneous Materials Analysis and Design
,”
ASME J. Mech. Des.
,
135
(10), p.
101010
.10.1115/1.4025117
45.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
, pp.
875
886
.10.1115/1.1904642
46.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera-Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
,
I. A.
,
Prud'homme
,
R. K.
, and
Brinson
,
L. C.
,
2008
, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat. Nanotechnol.
,
3
, pp.
327
331
.10.1038/nnano.2008.96
47.
Zheng
,
W.
, and
Wong
,
S. C.
,
2003
, “
Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites
,”
Compos. Sci. Technol.
,
63
, pp.
225
235
.10.1016/S0266-3538(02)00201-4
48.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2009
,
Mechanical Behavior of Materials
,
Cambridge University
,
Cambridge, UK
.
49.
Brinson
,
L. C. B. H. F.
,
2007
,
Polymer Engineering Science and Viscoelasticity: An Introduction
,
Springer
,
New York
.
50.
Deng
,
H.
,
Liu
,
Y.
,
Gai
,
D.
,
Dikin
D. A.
,
Putz
,
K. W.
,
Chen
,
W.
,
Brinson
,
L.
,
Burkhart
,
C.
,
Poldneff
,
B.
,
Jiang
,
B.
, and Papakonstantopoulos, G. J.,
2012
, “
Utilizing Real and Statistically Reconstructed Microstructures for the Viscoelastic Modeling of Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
72
(
14
), pp.
1725
1732
.10.1016/j.compscitech.2012.03.020
51.
Petelet
,
M.
,
Iooss
,
B.
,
Asserin
,
O.
, and
Loredo
,
A.
,
2010
, “
Latin Hypercube Sampling With Inequality Constraints
,”
Asta-Adv. Stat. Anal.
,
94
, pp.
325
339
.10.1007/s10182-010-0144-z
52.
Jin
,
R. C.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plann. Inference
,
134
, pp.
268
287
.10.1016/j.jspi.2004.02.014
53.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
,
2003
, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscipl. Optim.
,
25
, pp.
99
116
.10.1007/s00158-002-0277-0
54.
Saltelli
,
A.
,
2002
, “
Sensitivity Analysis for Importance Assessment
,”
Risk Anal.
,
22
, pp.
579
590
.10.1111/0272-4332.00040
55.
Archer
,
G. E. B.
,
Saltelli
,
A.
, and
Sobol
,
I. M.
,
1997
, “
Sensitivity Measures, ANOVA-Like Techniques and the Use of Bootstrap
,”
J. Stat. Comput. Simul.
,
58
, pp.
99
120
.10.1080/00949659708811825
56.
Deb
,
K.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
, pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.