This paper presents two integrated planar-spherical overconstrained mechanisms that are inspired and evolved from origami cartons with a crash-lock base. Investigating the crash-lock base of the origami cartons, the first overconstrained mechanism is evolved by integrating a planar four-bar linkage with two spherical linkages in the diagonal corners. The mechanism has mobility one and the overconstraint was exerted by the two spherical linkages. This mechanism is then evolved into another integrated planar-spherical overconstrained mechanism with two double-spherical linkages at the diagonal corners. The evolved mechanism has mobility one. It is interesting to find that the double-spherical linkage at the corner of this new mechanism is an overconstrained 6R linkage. The geometry evolution is presented and the constraint matrices of the mechanisms are formulated using screw-loop equations verifying mobility of the mechanisms. The paper further reveals the assembly conditions and geometric constraint of the two overconstrained mechanisms. Further, with mechanism decomposition, geometry and kinematics of the mechanisms are investigated with closed-form equations, leading to comparison of these two mechanisms with numerical simulation. The paper further proposes that the evolved overconstrained mechanism can in reverse lead to new origami folds and crease patterns. The paper hence not only lays the groundwork for kinematic investigation of origami-inspired mechanisms but also sheds light on the investigation of integrated overconstrained mechanisms.

References

References
1.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.10.1115/1.2829470
2.
Cundy
,
H. M.
, and
Rollett
,
A. P.
,
1952
,
Mathematical Models
,
Oxford University Press
,
New York
.
3.
Wohlhart
,
K.
,
1993
, “
Heureka Octahedron and Brussels Folding Cube as Special Cases of the Turing Tower
,”
Proceedings of the 6th International symposium Teoria si Practica Mecanismelor
, Vol.
2
, pp.
303
311
.
4.
Demaine
,
E.
, and
ORourke
,
J.
,
2007
,
Geometric Folding Algorithms
,
Cambridge University Press
,
New York
.
5.
Cromvik
,
C.
,
2007
, “
Numerical Folding of Airbags Based on Optimization and Origami
,” Master's thesis, Chalmers University of Technology and Goteborg University, Sweden.
6.
Ma
,
J.
, and
You
,
Z.
,
2010
, “
The Origami Crash Box
,” In Origami 5: the 5th International Conference on Origami in Science Mathematics and Education.
7.
Heller
,
A.
,
2003
, “
A Giant Leap for Space Telescopes
,”
Science and Technology Review
,
Lawrence Livermore National Laboratory
, Livermore, CA, pp.
12
18
.
8.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
216
(
10
), pp.
959
970
.10.1243/095440602760400931
9.
Liu
,
H.
, and
Dai
,
J. S.
,
2002
, “
Carton Manipulation Analysis Using Configuration Transformation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
216
(
5
), pp.
543
555
.10.1243/0954406021525331
10.
Dubey
,
V. N.
, and
Dai
,
J. S.
,
2006
, “
A Packaging Robot for Complex Cartons
,”
Ind. Robot: Int J.
,
33
(
2
), pp.
82
87
.10.1108/01439910610651374
11.
Dai
,
J. S.
,
Medland
,
A.
, and
Mullineux
,
G.
,
2009
, “
Carton Erection Using Reconfigurable Folder Mechanisms
,”
Packag. Technol. Sci.
,
22
(
2
), pp.
385
395
.10.1002/pts.859
12.
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2010
, “
Origami-Based Robotic Paper-and-Board Packaging For Food Industry
,”
Trends Food Sci. Technol.
,
21
(
3
), pp.
153
157
.10.1016/j.tifs.2009.10.007
13.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME, J. Appl. Mech.
,
61
, pp.
773
777
.10.1115/1.2901553
14.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME, J. Appl. Mech.
,
61
(4), pp.
777
783
.10.1115/1.2901554
15.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME, J. Appl. Mech.
,
63
(1), pp.
77
83
.10.1115/1.2787212
16.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.10.1016/j.tws.2012.02.007
17.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Vis. Comput. Graph.
,
16
(
2
), pp.
298
311
.10.1109/TVCG.2009.67
18.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1997
, “
Theory on Kinematic Synthesis and Motion Analysis of Origami Cartons
,” Science and Technology Report No. PS 97 0184, Unilever Research.
19.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.10.1016/j.mechmachtheory.2010.08.004
20.
Dai
,
J. S.
, and
Wang
,
D.
,
2007
, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME, J. Appl. Mech.
,
129
(
11
), pp.
1191
1197
.10.1115/1.2771576
21.
Rodriguez Leal
,
E.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-dof Parallel Mechanisms
,”
Proceedings of 31st ASME Mechanisms and Robotics Conference
, Las Vegas, Nevada, September 4–7, 2007,
ASME
Paper No. DETC2007-35516, pp.
1183
1193
.10.1115/DETC2007-35516
22.
Rodriguez-Leal
,
E.
,
2009
, “
Geometry, Mobility and Characteristics of a New Family of Centralized Motion Parallel Mechanisms Inspired From Artiomimetics
,” Ph.D. dissertation, Kings College London, London, UK.
23.
Wohlhart
,
K.
,
2007
, “
Cupola Linkages
,”
12th IFToMM World Congress
.
24.
Winder
,
B.
,
Magleby
,
S.
, and
Howell
,
L. L.
,
2007
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
31st ASME Mechanisms and Robotics Conference
.
25.
Winder
,
B.
,
Magleby
,
S.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-up Paper Mechanisms
,”
ASME, J. Appl. Mech.
,
1
(
2
), p.
021009
.
26.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME, J. Appl. Mech.
,
132
(
12
), p.
121001
.10.1115/1.4002691
27.
Wu
,
W.
, and
You
,
Z.
,
2011
, “
A Solution for Folding Rigid Tall Shopping Bags
,”
Proc. R. Soc. London, Ser. A
,
467
, pp.
2561
2574
.10.1098/rspa.2011.0120
28.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. London, Ser. A
,
466
(
2119
), pp.
2155
2174
.10.1098/rspa.2009.0625
29.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,” Proceedings of the 1st International Meeting of Origami Science and Technology, H. Huzita, ed., pp.
229
237
.
30.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
, pp.
217
225
.10.5194/ms-2-217-2011
31.
Bennett
,
G. T.
,
1914
, “
The Skew Isogram Mechanism
,”
Proc. London Math. Soc.
,
13
(
2
), pp.
151
173
.10.1112/plms/s2-13.1.151
32.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
661
.
33.
Waldron
,
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
, pp.
73
78
.10.1016/0022-2569(68)90016-5
34.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Spatial 6r Linkages Based on the Combination of Two Goldberg 5r Linkages
,”
Mech. Mach. Theory
,
42
, pp.
1484
1498
.10.1016/j.mechmachtheory.2006.12.008
35.
Baker
,
E. J.
,
2002
, “
Displacement-Closure Equations of the Unspecialised Double-Hooke's-Joint Linkage
,”
Mech. Mach. Theory
,
37
, pp.
1127
1144
.10.1016/S0094-114X(02)00042-3
36.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6r Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031004
.10.1115/1.4004225
37.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms, Special Supplement on Spatial Mechanisms and Robot Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.10.1115/1.1901708
38.
Dai
,
J. S.
,
2014
,
Screw Algebra and Kinematic Approaches for Mechanisms and Robotics
,
Springer
.
39.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.10.1115/1.4001730
40.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Synthesis of a Family of Regular Deployable Polyhedral Mechanisms (dpms)
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.
Springer
,
New York
, pp.
123
130
.
41.
Liu
,
Y.
, and
Ting
,
K.
,
1994
, “
On the Rotatability of Spherical n-Bar Chains
,”
ASME J. Mech. Des.
,
116
(
5
), pp.
920
923
.10.1115/1.2919470
42.
Chiang
,
C. H.
,
2000
,
Kinematics of Spherical Mechanisms
,
Krieger Publishing Company
,
Malabar, FL
.
43.
Dai
,
J. S.
, and
Shah
,
P.
,
2003
, “
Orientation Capability of Planar Manipulators Using Virtual Joint Angle Analysis
,”
Mech. Mach. Theory
,
38
(
3
), pp.
241
252
.10.1016/S0094-114X(02)00118-0
44.
Yao
,
W.
, and
Dai
,
J. S.
,
2008
, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022303
.10.1115/1.2813783
You do not currently have access to this content.