Seat style designers transform their ideas into 3-D forms using creative, iterative modeling processes to quickly evolve their designs from concept to reality, while refining the design details of the seat shape. Although the recent introduction of computer-aided styling systems to the design process has greatly enhanced designers' productivity, they still prefer to ideate using “pen and paper.” Here, we propose a sketch-based 3-D modeling system that enables designers to rapidly and intuitively create a seat shape by applying a 2-D sketch to a normalized seat reference model and then evaluating the newly designed model. For this purpose, we describe three modeling techniques that support interactive shape editing: curve manipulation using pen strokes, vertex point manipulation, and tangent vector manipulation. In addition, we propose three methods for the design and functional evaluation of an automotive seat, checking for interference between a seat skin and its frame, checking for foldability among seat components with regard to their positioning, and checking for coupling between a seat model and a digital human body.

References

1.
Wang
,
S.
, and
Kaufman
,
A.
,
1994
, “
Volume-Sampled 3D Modeling
,”
IEEE Comput. Graphics Appl.
,
14
(
5
), pp.
26
32
.10.1109/38.310721
2.
Kaufman
,
A.
,
Cohen
,
D.
, and
Yagel
,
R.
,
1993
, “
Volume Graphics
,”
Computer
,
26
(
7
), pp.
51
64
.10.1109/MC.1993.274942
3.
Galyean
,
T.
, and
Hughes
,
J.
,
1991
, “
Sculpting: An Interactive Volumetric Modeling Technique
,”
Proceedings of the SIGGRAPH Conference
, pp.
267
274
.
4.
Perng
,
K. L.
,
Wang
,
W. T.
,
Flanagan
,
M.
, and
Ouhyoung
,
M.
,
2001
, “
A Real-Time 3D Virtual Sculpting Tool Based on Modified Marching Cubes
,”
Proceedings of the International Conference on Artificial Reality and Tele-Existence
, pp.
64
72
.
5.
Ferley
,
E.
,
Cani
,
M. P.
, and
Gascuel
,
J. D.
,
2000
, “
Practical Volumetric Sculpting
,”
Visual Comput.
,
16
(
8
), pp.
469
480
.10.1007/PL00007216
6.
Ferley
,
E.
,
Cani
,
M. P.
, and
Gascuel
,
J. D.
,
2001
, “
Resolution Adaptive Volume Sculpting
,”
Graphical Models
,
63
(
6
), pp.
459
478
.10.1006/gmod.2001.0558
7.
Velho
,
L.
,
Gomes
,
J.
, and
de Figueiredo
,
L. H.
,
2002
,
Implicit Objects in Computer Graphics
,
Springer
,
Berlin
.
8.
Wyvill
,
G.
,
McPheeters
,
C.
, and
Wyvill
,
B.
,
1986
, “
Data Structures for Soft Objects
,”
Visual Comput.
,
2
(
4
), pp.
227
234
.10.1007/BF01900346
9.
Wyvill
,
B.
,
McPheeters
,
C.
, and
Wyvill
,
G.
,
1986
, “
Animating Soft Objects
,”
Visual Comput.
,
2
(
4
), pp.
235
242
.10.1007/BF01900347
10.
Sugihara
,
M.
,
de Groot
,
E.
,
Wyvill
,
B.
, and
Schmidt
,
R.
,
2008
, “
A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler
,”
Proceedings of the 5th Eurographics Workshop on Sketch-based Interfaces and Modeling
, pp.
65
72
.
11.
Schmidt
,
R.
,
Wyvill
,
B.
,
Sousa
,
M.
, and
Jorge
,
J.
,
2005
, “
Shapeshop: Sketch-Based Solid Modeling With Blobtrees
,”
Proceedings of the 2nd Eurographics Workshop on Sketch-Based Interfaces and Modeling
, pp.
53
62
.
12.
Schmidt
,
R.
,
Wyvill
,
B.
, and
Galin
,
E.
,
2005
, “
Interactive Implicit Modeling With Hierarchical Spatial Caching
,”
Proceedings of the International Conference on Shape Modeling and Applications
, pp.
104
113
.
13.
Angelidis
,
A.
,
Jepp
,
P.
, and
Cani
,
M. P.
,
2002
, “
Implicit Modeling With Skeleton Curves: Controlled Blending in Contact Situations
,”
Proceedings of the Shape Modeling International Conference
, pp.
137
144
.
14.
Hornus
,
S.
,
Angelidis
,
A.
, and
Cani
,
M. P.
,
2003
, “
Implicit Modelling Using Subdivision Curves
,”
Visual Comput.
,
19
(
2–3
), pp.
94
104
.
15.
Nishimura
,
H.
,
Hirai
,
M.
,
Kawai
,
T.
,
Kawata
,
T.
,
Shirakawa
,
I.
, and
Omura
,
K.
,
1985
, “
Object Modeling by Distribution Function and a Method of Image Generation
,”
Trans. Inst. Electron. Commun. Eng. Jpn.
,
J68-D
(
4
), pp.
718
725
.
16.
Tong
,
R.
,
Kaneda
,
K.
, and
Yamashita
,
H.
,
2002
, “
A Volume-Preserving Approach for Modeling and Animating Water Flows Generated by Metaballs
,”
Visual Comput.
,
18
, pp.
469
480
.10.1007/s003710100164
17.
Chen
,
D.
, and
Zhang
,
J.
,
2010
, “
Merging of Water Droplets Base-On Metaball
,”
Proceedings of the International Conference on Digital Manufacturing and Automation
, pp.
716
719
.
18.
Kalogerakis
,
E.
,
Chaudhuri
,
S.
,
Koller
,
D.
, and
Koltun
,
V.
,
2012
, “
A Probabilistic Model for Component-Based Shape Synthesis
,”
ACM Trans. Graphics
,
31
(
4
), pp.
1
11
.
19.
Iyer
,
N.
,
Jayanti
,
S.
,
Lou
,
K.
,
Kalyanaraman
,
Y.
, and
Ramani
,
K.
,
2005
, “
Three-Dimensional Shape Searching: State-of-the-Art Review and Future Trends
,”
Comput.-Aided Des.
,
37
(
5
), pp.
509
530
.10.1016/j.cad.2004.07.002
20.
Murugappan
,
S.
, and
Ramani
,
K.
,
2009
, “
FEAsy: A Sketch-Based Interface Integrating Structural Analysis in Early Design
,”
Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2009
, August 30–September 2, 2009, San Diego, CA, pp.
743
752
10.1115/DETC2009-87727.
21.
Bae
,
S. H.
, and
Kijima
,
R.
,
2003
, “
Digital Styling for Designer: In Prospective Automotive Design
,”
Proceedings of Virtual Systems and Multi Media
, pp.
546
553
.
22.
Cheon
,
S. W.
, and
Han
,
S. H.
,
2008
, “
A Template-Based Reconstruction of Plane-Symmetric 3D Models From Freehand Sketches
,”
Comput.-Aided Des.
,
40
, pp.
975
986
.10.1016/j.cad.2008.07.006
23.
Pu
,
J.
, and
Ramani
,
K.
,
2007
, “
Priority-Based Geometric Constraint Satisfaction
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
, pp.
322
329
.10.1115/1.2795301
24.
Bae
,
S. H.
,
Balakrishnan
,
R.
, and
Singh
,
K.
,
2008
, “
ILoveSketch: As-Natural-As Possible Sketching System for Creating 3D Curve Models
,”
Proceedings of ACM Symposium on User Interface Software and Technology
, pp.
151
160
.
25.
Turquin
,
E.
,
Cani
,
M. P.
, and
Hughes
,
J. F.
,
2004
, “
Sketching Garments for Virtual Characters
,”
Proceedings of 2004 EG Workshop on Sketch-Based Interfaces and Modeling
, pp.
175
182
.
26.
Wang
,
C. C. L.
,
Wang
,
Y.
, and
Yuen
,
M. M. F.
,
2003
, “
Feature Based 3D Garment Design Through 2D Sketches
,”
Comput.-Aided Des.
,
35
(
7
), pp.
659
672
.10.1016/S0010-4485(02)00091-X
27.
Kara
,
L. B.
, and
Shimada
,
K.
,
2007
, “
Sketch-Based 3D-Shape Creation for Industrial Styling Design
,”
IEEE Comput. Graphics Appl.
,
27
(
1
), pp.
60
71
.10.1109/MCG.2007.18
28.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
,
Elsevier Science
,
New York
.
You do not currently have access to this content.