This paper explores the simulation-based design optimization of a variable geometry spray (VGS) fuel injector. A multi-objective genetic algorithm (MOGA) is interfaced with commercial computational fluid dynamics (CFD) software and high performance computing capabilities to evaluate the spray characteristics of each VGS candidate design. A three-point full factorial experimental design is conducted to identify significant design variables and to better understand possible variable interactions. The Pareto frontier of optimal designs reveals the inherent tradeoff between two performance objectives—actuator stroke and spray angle sensitivity. Analysis of these solutions provides insight into dependencies between design parameters and the performance objectives and is used to assess possible performance gains with respect to initial prototype configurations. These insights provide valuable design information for the continued development of this VGS technology.

References

References
1.
Federal Register
,
66
:
5002
5193
,
2001
.
2.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.10.1016/j.pecs.2009.05.001
3.
Christensen
,
M.
,
2002
, “
HCCI Combustion-Engine Operation and Emission Characteristics
,” Ph.D. thesis,
Department of Heat and Power Engineering, Lund University
,
Lund, Sweden
.
4.
Gatellier
,
B.
,
Walter
,
B.
, and
Miche
,
M.
,
2001
, “
New Diesel Combustion Process to Achieve Near Zero NOx and Particulates Emissions
,”
A new generation of engine combustion processes for the future?
,
Technip
,
Paris
, pp.
43
52
.
5.
Duffy
,
K.
,
2004
, “
Heavy Truck Clean Diesel (HTCD) Program
,”
Diesel Engine Emission Reduction Conference
,
Coronado
,
CA
.
6.
Sun
,
Y.
, and
Reitz
,
R.
,
2006
, “
Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion
,”
SAE 2006 World Congress & Exhibition
Warrendale, PA
, SAE Paper No. 2006-01-0027.
7.
Fang
,
T.
,
Coverdill
,
R.
,
Lee
,
C.
, and
White
,
R.
,
2008
, “
Effects of Injection Angles on Combustion Processes Using Multiple Injection Strategies in an HSDI Diesel Engine
,”
Fuel
,
87
(
15–16
), pp.
3232
3239
.10.1016/j.fuel.2008.05.012
8.
Lien
,
J.
,
2011
, “
Design, Modeling, and Control of a Variable Geometry Spray Fuel Injector
,” Ph.D. thesis,
Department of Mechanical and Aerospace Engineering
,
North Carolina State University
,
Raleigh, NC.
9.
Niebrzydoski
,
J.
,
1995
, “
Fuel Injection System for Internal Combustion Engines
,” U.S. Patent 5,398,654.
10.
Ferguson
,
S.
,
Lewis
,
K.
,
Siddiqi
,
A.
, and
de Weck
,
O.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
ASME Design Engineering Technical Conferences, Design Automation Conference
,
Las Vegas, NV
, Paper No. DETC2007/DAC-35745.
11.
Lien
,
J.
,
Zhang
,
J.
,
Fang
,
T.
, and
Buckner
,
G.
,
2011
, “
Preliminary Testing of Sprays With Continuously Variable Spray Geometry
,”
Proceedings of the ILASS-Americas 23rd Annual Conference on Liquid Atomization and Spray Systems
,
Ventura
,
CA
.
12.
Kastengren
,
A. L.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
,
Manin
,
J.
,
Pickett
,
L. M.
,
Payri
,
R.
, and
Bazyn
,
T.
,
2012
, “
Engine Combustion Network (ECN): Measurements of Nozzle Diameter and Hydraulic Behavior of Diesel Sprays
,” Atomization and Sprays.
13.
Archer
,
J.
,
Lien
,
J.
,
Fang
,
T.
, and
Buckner
,
G.
,
2012
, “
Close Loop Control of Continuously Variable Geometry Sprays
,”
Proceedings of the ILASS-Americas 24th Annual Conference on Liquid Atomization and Spray Systems
,
San Antonio, TX
.
14.
Fujii
,
H.
,
2007
, “
Injector for High-Pressure Injection
,” U.S. Patent 7,222,608.
15.
ANSYS, Inc.
ANSYS Workbench 12.0, Canonsburg, PA
,
2008
.
16.
Python Software Foundation, Python 2.7.5
, http://www.python.org
17.
Date
,
A.
,
2005
,
Introduction to Computational Fluid Dynamics
,
Cambridge University Press
,
New York
, Chap. 6.
18.
Suleman
,
A.
,
Prasad
,
E.
,
Blackow
,
R.
, and
Waechter
,
D.
,
2001
, “
Smart Structres—An Overview
,”
Smart Structures: Applications and Related Technologies
,
A.
Suleman
, ed., Number 429 in CISM Courses and Lectures,
Springer
,
Italy
, pp.
3
16
.
19.
The Mathworks, Inc.
,
2013
,
Matlab version 2013a, Global Optimization Toolbox
, Natick, MA.
20.
Kudikala
,
R.
,
Kalyanmoy
,
D.
, and
Bhattacharya
,
B.
,
2009
, “
Multi-Objective Optimization of Piezoelectric Actuator Placement for Shape Control of Plates Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091007
.10.1115/1.3160313
21.
Deb
,
K.
, and
Jain
,
S.
,
2003
, “
Mutli-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
609
619
.10.1115/1.1596242
22.
Shahi
,
S.
,
Wang
,
G.
,
An
,
L.
,
Bibeau
,
E.
, and
Pirmoradi
,
Z.
,
2011
, “
Using the Pareto Set Pursuing Multiobjective Optimization Approach for Hybridization of a Plug-In Hybrid Electric Vehicle
,”
ASME J. Mech. Des.
,
133
(
9
), p.
094503
.10.1115/1.4007149
23.
Zhang
,
X.
, and
Nelson
,
C.
,
2011
, “
Multiple-Criteria Kinematic Optimization for the Design of Spherical Serial Mechanisms Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011005
.10.1115/1.4003138
24.
Beume
,
N.
,
Naujoks
,
B.
, and
Emmerich
,
M.
,
2007
, “
SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume
,”
Eur. J. Oper. Res.
,
181
(
3
), pp.
1653
1669
.10.1016/j.ejor.2006.08.008
25.
Wu
,
J.
, and
Azarm
,
S.
,
2001
, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.10.1115/1.1329875
26.
Los Alamos National Laboratory
,
2010
,
KIVA, Los Alamos, NM
.
You do not currently have access to this content.